# Quantum q greater than 1

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Let $q>1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{-2}, q^{-1}, 1, q, q^2, \ldots \}$ of quantum numbers is a time scale.

 Forward jump: $\sigma(t)=qt$ derivation Forward graininess: $\mu(t)=t(q-1)$ derivation Backward jump: $\rho(t)=$ derivation Backward graininess: $\nu(t)=$ derivation $\Delta$-derivative $f^{\Delta}(t)= \left\{ \begin{array}{ll} \dfrac{f(qt)-f(t)}{t(q-1)} &; t\neq 0 \\ \displaystyle\lim_{h \rightarrow 0} \dfrac{f(h)-f(0)}{h} &; t=0 \end{array} \right.$ derivation $\nabla$-derivative $f^{\nabla}(t)=$ derivation $\Delta$-integral $\begin{array}{ll} \displaystyle\int_s^t f(\tau) \Delta \tau &= \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} q^{k} (q-1) f(q^k) \\ \end{array}$ derivation $\nabla$-integral $\displaystyle\int_s^t f(\tau) \nabla \tau=$ derivation $h_k(t,s)$ $h_k(t,s)=\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^ns}{\sum_{i=0}^n q^i}$ derivation $\hat{h}_k(t,s)$ $\hat{h}_k(t,s)=$ derivation $g_k(t,s)$ $g_k(t,s)=$ derivation $\hat{g}_k(t,s)$ $\hat{g}_k(t,s)=$ derivation $e_p(t,s)$ $e_p(t,s)=\displaystyle\prod_{k=\log_q(s)}^{\log_q(t)-1} 1 + p(q^k)q^{k}(q-1)$ derivation $\hat{e}_p(t,s)$ $\hat{e}_p(t,s)=$ derivation Gaussian bell $\mathbf{E}(t)=$ derivation $\mathrm{sin}_p(t,s)=$ $\sin_p(t,s)=$ derivation $\mathrm{\sin}_1(t,s)$ $\sin_1(t,s)=$ derivation $\widehat{\sin}_p(t,s)$ $\widehat{\sin}_p(t,s)=$ derivation $\mathrm{\cos}_p(t,s)$ $\cos_p(t,s)=$ derivation $\mathrm{\cos}_1(t,s)$ $\cos_1(t,s)=$ derivation $\widehat{\cos}_p(t,s)$ $\widehat{\cos}_p(t,s)=$ derivation $\sinh_p(t,s)$ $\sinh_p(t,s)=$ derivation $\widehat{\sinh}_p(t,s)$ $\widehat{\sinh}_p(t,s)=$ derivation $\cosh_p(t,s)$ $\cosh_p(t,s)=$ derivation $\widehat{\cosh}_p(t,s)$ $\widehat{\cosh}_p(t,s)=$ derivation Gamma function $\Gamma_{\overline{q^{\mathbb{Z}}}}(x,s)=$ derivation Euler-Cauchy logarithm $L(t,s)=$ derivation Bohner logarithm $L_p(t,s)=$ derivation Jackson logarithm $\log_{\overline{q^{\mathbb{Z}}}} g(t)=$ derivation Mozyrska-Torres logarithm $L_{\overline{q^{\mathbb{Z}}}}(t)=$ derivation Laplace transform $\mathscr{L}_{\overline{q^{\mathbb{Z}}}}\{f\}(z;s)=$ derivation Hilger circle derivation

# References

## Examples of time scales

$\Huge\mathbb{R}$
Real numbers
$\Huge\mathbb{Z}$
Integers
$\Huge{h\mathbb{Z}}$
Multiples of integers
$\Huge\mathbb{Z}^2$
Square integers
$\Huge\mathbb{H}$
Harmonic numbers
$\Huge\mathbb{T}_{\mathrm{iso}}$
Isolated points
$\Huge\sqrt[n]{\mathbb{N}_0}$
nth root numbers
$\Huge\mathbb{P}_{a,b}$
Evenly spaced intervals
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q>1$
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q<1$
$\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$
Closure of unit fractions
$\Huge\mathcal{C}$
Cantor set