Gamma function

From timescalewiki
Jump to: navigation, search

Let $\mathbb{T}$ be a time scale and define $p_f(t,s)=e_{\frac{f}{\mathrm{id}}}(t,s)$, where $\mathrm{id}$ denotes the identity map $\mathrm{id} \colon \mathbb{T} \rightarrow \mathbb{T}$ and $e_{\frac{f}{\mathrm{id}}}$ denotes the delta exponential. With these definitions, we define the gamma operator $$\Gamma_{\mathbb{T}}(f;s)=\mathscr{L}_{\mathbb{T}}\{p_{f \boxminus_{\mu} 1}(\cdot,s)\}(1)=\displaystyle\int_0^{\infty} p_{f \boxminus_{\mu}1}(\eta,s) e_{\ominus_{\mu}1}^{\sigma}(\eta,0) \Delta \eta,$$ where $\mathscr{L}_{\mathbb{T}}$ denotes the Laplace transform, $\boxminus_{\mu}$ denotes forward box minus, $\ominus_{\mu}$ denotes forward circle minus, and $\sigma$ denotes the forward jump.

Properties of gamma functions

Convergence of gamma function at positive values
Gamma function diverges at zero
Gamma function diverges at infinity
Gamma function equals one at one
Gamma function of x boxplus one
Gamma function on certain time scales at bracket number equals bracket factorial

Examples of gamma functions

We write formulas for gamma functions defined for $x \in \mathbb{R}^+$ and $s \in \mathbb{T}^+$.

$\mathbb{T}=$ $\Gamma_{\mathbb{T}}(x;s)=$
$\mathbb{R}$ $\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} \mathrm{d}\tau$
$h\mathbb{Z};h>0$ $h \displaystyle\sum_{k=0}^{\infty} \left( \displaystyle\prod_{j=s}^{k-1} \dfrac{j+x}{j+1} \right) \dfrac{1}{(1+h)^{k+1}}$
$\overline{q^{\mathbb{Z}}}; q>1$ $\dfrac{(q-1)s}{(1+(q-1)x)^{\log_q(s)}} \displaystyle\sum_{k=-\infty}^{\infty} \dfrac{(1+(q-1)x)^k}{\prod_{j=-\infty}^{k} (1+(q-1)q^k)}$