Delta cosine

From timescalewiki
Jump to: navigation, search

Let $\mathbb{T}$ be a time scale, let $t_0 \in \mathbb{T}$, and let $\mu p^2 \colon \mathbb{T} \rightarrow \mathbb{R}$ be a regressive function. We define the trigonometric functions $\cos_p \colon \mathbb{T} \rightarrow \mathbb{R}$ $$\cos_p(t,t_0)=\dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2},$$ where $i=\sqrt{-1}$.

Properties

Derivative of delta cosine
Sum of squares of delta cosine and delta sine
Derivative of Delta sine

Examples

Time Scale Cosine Functions
$\mathbb{T}$ $\cos_p(t,s)= $
$\mathbb{R}$
$\mathbb{Z}$
$h\mathbb{Z}$
$\mathbb{Z}^2$
$\overline{q^{\mathbb{Z}}}, q > 1$
$\overline{q^{\mathbb{Z}}}, q < 1$
$\mathbb{H}$

See Also

Delta sine
Delta cosh

$\Delta$-special functions on time scales


$\cos_p$

$\cosh_p$

$e_p$

$g_k$

$h_k$

$\sin_p$

$\sinh_p$