Nth root of nonnegative integers
From timescalewiki
Let $n \in \{1,2,\ldots\}$. The set $\sqrt[n]{\mathbb{N}_0}=\{0,1,\sqrt[n]{2}, \sqrt[n]{3},\ldots\}$ is a time scale.
Forward jump: | $\sigma(t)=\sqrt[n]{t^n+1}$ | derivation |
Forward graininess: | $\mu(t)=\sqrt[n]{t^n+1}-t$ | derivation |
Backward jump: | $\rho(t)=\sqrt[n]{t^n-1}$ | derivation |
Backward graininess: | $\nu(t)=t-\sqrt[n]{t^n-1}$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t)=\dfrac{f(\sqrt[n]{t^n+1})-f(t)}{\sqrt[n]{t^n+1}-t}$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t)=\dfrac{f(t)-f(\sqrt[n]{t^n-1})}{t-\sqrt{t^n-1}}$ | derivation |
$\Delta$-integral | $\displaystyle\int_s^t f(\tau) \Delta \tau=\displaystyle\sum_{k=s^n}^{t^n-1} (\sqrt[n]{k+1}-\sqrt[n]{k}) f(\sqrt[n]{k})$ | derivation |
$\nabla$-integral | $\displaystyle\int_s^t f(\tau) \nabla \tau=$ | derivation |
$h_k(t,s)$ | $h_k(t,s)=$ | derivation |
$\hat{h}_k(t,s)$ | $\hat{h}_k(t,s)=$ | derivation |
$g_k(t,s)$ | $g_k(t,s)=$ | derivation |
$\hat{g}_k(t,s)$ | $\hat{g}_k(t,s)=$ | derivation |
$e_p(t,s)$ | $e_p(t,s)=$ | derivation |
$\hat{e}_p(t,s)$ | $\hat{e}_p(t,s)=$ | derivation |
Gaussian bell | $\mathbf{E}(t)=$ | derivation |
$\mathrm{sin}_p(t,s)=$ | $\sin_p(t,s)=$ | derivation |
$\mathrm{\sin}_1(t,s)$ | $\sin_1(t,s)=$ | derivation |
$\widehat{\sin}_p(t,s)$ | $\widehat{\sin}_p(t,s)=$ | derivation |
$\mathrm{\cos}_p(t,s)$ | $\cos_p(t,s)=$ | derivation |
$\mathrm{\cos}_1(t,s)$ | $\cos_1(t,s)=$ | derivation |
$\widehat{\cos}_p(t,s)$ | $\widehat{\cos}_p(t,s)=$ | derivation |
$\sinh_p(t,s)$ | $\sinh_p(t,s)=$ | derivation |
$\widehat{\sinh}_p(t,s)$ | $\widehat{\sinh}_p(t,s)=$ | derivation |
$\cosh_p(t,s)$ | $\cosh_p(t,s)=$ | derivation |
$\widehat{\cosh}_p(t,s)$ | $\widehat{\cosh}_p(t,s)=$ | derivation |
Gamma function | $\Gamma_{\sqrt[n]{\mathbb{N}}}(x,s)=$ | derivation |
Euler-Cauchy logarithm | $L(t,s)=$ | derivation |
Bohner logarithm | $L_p(t,s)=$ | derivation |
Jackson logarithm | $\log_{\sqrt[n]{\mathbb{N}}} g(t)=$ | derivation |
Mozyrska-Torres logarithm | $L_{\sqrt[n]{\mathbb{N}}}(t)=$ | derivation |
Laplace transform | $\mathscr{L}_{\sqrt[n]{\mathbb{N}}}\{f\}(z;s)=$ | derivation |
Hilger circle | derivation |