The set
$$\mathbb{H}=\left\{\displaystyle\sum_{k=1}^n \dfrac{1}{k} \colon n \in \mathbb{Z}^+ \right\} = \left\{1,\frac{3}{2},\frac{11}{6},\frac{25}{12},\frac{137}{60},\frac{49}{20},\frac{
363}{140},\frac{761}{280},\ldots \right\}$$
of harmonic numbers is a time scale.
$\mathbb{T}=\mathbb{H}$
Forward jump:
|
$\sigma(t)=$
|
derivation
|
Forward graininess:
|
$\mu(t)=$
|
derivation
|
Backward jump:
|
$\rho(t)=$
|
derivation
|
Backward graininess:
|
$\nu(t)=$
|
derivation
|
$\Delta$-derivative
|
$f^{\Delta}(t)=$
|
derivation
|
$\nabla$-derivative
|
$f^{\nabla}(t)=$
|
derivation
|
$\Delta$-integral
|
$\displaystyle\int_s^t f(\tau) \Delta \tau=$
|
derivation
|
$\nabla$-integral
|
$\displaystyle\int_s^t f(\tau) \nabla \tau=$
|
derivation
|
$h_k(t,s)$
|
$h_k(t,s)=$
|
derivation
|
$\hat{h}_k(t,s)$
|
$\hat{h}_k(t,s)=$
|
derivation
|
$g_k(t,s)$
|
$g_k(t,s)=$
|
derivation
|
$\hat{g}_k(t,s)$
|
$\hat{g}_k(t,s)=$
|
derivation
|
$e_p(t,s)$
|
$e_p(t,s)=$
|
derivation
|
$\hat{e}_p(t,s)$
|
$\hat{e}_p(t,s)=$
|
derivation
|
Gaussian bell
|
$\mathbf{E}(t)=$
|
derivation
|
$\mathrm{sin}_p(t,s)=$
|
$\sin_p(t,s)=$
|
derivation
|
$\mathrm{\sin}_1(t,s)$
|
$\sin_1(t,s)=$
|
derivation
|
$\widehat{\sin}_p(t,s)$
|
$\widehat{\sin}_p(t,s)=$
|
derivation
|
$\mathrm{\cos}_p(t,s)$
|
$\cos_p(t,s)=$
|
derivation
|
$\mathrm{\cos}_1(t,s)$
|
$\cos_1(t,s)=$
|
derivation
|
$\widehat{\cos}_p(t,s)$
|
$\widehat{\cos}_p(t,s)=$
|
derivation
|
$\sinh_p(t,s)$
|
$\sinh_p(t,s)=$
|
derivation
|
$\widehat{\sinh}_p(t,s)$
|
$\widehat{\sinh}_p(t,s)=$
|
derivation
|
$\cosh_p(t,s)$
|
$\cosh_p(t,s)=$
|
derivation
|
$\widehat{\cosh}_p(t,s)$
|
$\widehat{\cosh}_p(t,s)=$
|
derivation
|
Gamma function
|
$\Gamma_{\mathbb{H}}(x,s)=$
|
derivation
|
Euler-Cauchy logarithm
|
$L(t,s)=$
|
derivation
|
Bohner logarithm
|
$L_p(t,s)=$
|
derivation
|
Jackson logarithm
|
$\log_{\mathbb{H}} g(t)=$
|
derivation
|
Mozyrska-Torres logarithm
|
$L_{\mathbb{H}}(t)=$
|
derivation
|
Laplace transform
|
$\mathscr{L}_{\mathbb{H}}\{f\}(z;s)=$
|
derivation
|
Hilger circle
|
|
derivation
|