Let $0<q<1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{2}, q^{1}, 1, q^{-1}, q^{-2}, \ldots \}$ of quantum numbers is a time scale.
$\mathbb{T}=\overline{q^{\mathbb{Z}}}$
Forward jump:
|
$\sigma(t)=$
|
derivation
|
Forward graininess:
|
$\mu(t)=$
|
derivation
|
Backward jump:
|
$\rho(t)=$
|
derivation
|
Backward graininess:
|
$\nu(t)=$
|
derivation
|
$\Delta$-derivative
|
$f^{\Delta}(t)=$
|
derivation
|
$\nabla$-derivative
|
$f^{\nabla}(t)=$
|
derivation
|
$\Delta$-integral
|
$\displaystyle\int_s^t f(\tau) \Delta \tau=$
|
derivation
|
$\nabla$-integral
|
$\displaystyle\int_s^t f(\tau) \nabla \tau=$
|
derivation
|
$h_k(t,s)$
|
$h_k(t,s)=$
|
derivation
|
$\hat{h}_k(t,s)$
|
$\hat{h}_k(t,s)=$
|
derivation
|
$g_k(t,s)$
|
$g_k(t,s)=$
|
derivation
|
$\hat{g}_k(t,s)$
|
$\hat{g}_k(t,s)=$
|
derivation
|
$e_p(t,s)$
|
$e_p(t,s)=$
|
derivation
|
$\hat{e}_p(t,s)$
|
$\hat{e}_p(t,s)=$
|
derivation
|
Gaussian bell
|
$\mathbf{E}(t)=$
|
derivation
|
$\mathrm{sin}_p(t,s)=$
|
$\sin_p(t,s)=$
|
derivation
|
$\mathrm{\sin}_1(t,s)$
|
$\sin_1(t,s)=$
|
derivation
|
$\widehat{\sin}_p(t,s)$
|
$\widehat{\sin}_p(t,s)=$
|
derivation
|
$\mathrm{\cos}_p(t,s)$
|
$\cos_p(t,s)=$
|
derivation
|
$\mathrm{\cos}_1(t,s)$
|
$\cos_1(t,s)=$
|
derivation
|
$\widehat{\cos}_p(t,s)$
|
$\widehat{\cos}_p(t,s)=$
|
derivation
|
$\sinh_p(t,s)$
|
$\sinh_p(t,s)=$
|
derivation
|
$\widehat{\sinh}_p(t,s)$
|
$\widehat{\sinh}_p(t,s)=$
|
derivation
|
$\cosh_p(t,s)$
|
$\cosh_p(t,s)=$
|
derivation
|
$\widehat{\cosh}_p(t,s)$
|
$\widehat{\cosh}_p(t,s)=$
|
derivation
|
Gamma function
|
$\Gamma_{\overline{q^{\mathbb{Z}}}}(x,s)=$
|
derivation
|
Euler-Cauchy logarithm
|
$L(t,s)=$
|
derivation
|
Bohner logarithm
|
$L_p(t,s)=$
|
derivation
|
Jackson logarithm
|
$\log_{\overline{q^{\mathbb{Z}}}} g(t)=$
|
derivation
|
Mozyrska-Torres logarithm
|
$L_{\overline{q^{\mathbb{Z}}}}(t)=$
|
derivation
|
Laplace transform
|
$\mathscr{L}_{\overline{q^{\mathbb{Z}}}}\{f\}(z;s)=$
|
derivation
|
Hilger circle
|
|
derivation
|