Difference between revisions of "Closure of unit fractions"
From timescalewiki
Line 119: | Line 119: | ||
|- | |- | ||
|[[Jackson logarithm]] | |[[Jackson logarithm]] | ||
− | |$\log_{\overline{\left\{\ | + | |$\log_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}} g(t)=$ |
|[[Derivation of the Jackson logarithm for T=Closure of unit fractions|derivation]] | |[[Derivation of the Jackson logarithm for T=Closure of unit fractions|derivation]] | ||
|- | |- | ||
|[[Mozyrska-Torres logarithm]] | |[[Mozyrska-Torres logarithm]] | ||
− | |$L_{\overline{\left\{\ | + | |$L_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}}(t)=$ |
|[[Derivation of the Mozyrska-Torres logarithm for T=Closure of unit fractions|derivation]] | |[[Derivation of the Mozyrska-Torres logarithm for T=Closure of unit fractions|derivation]] | ||
|- | |- | ||
|[[Laplace transform]] | |[[Laplace transform]] | ||
− | |$\mathscr{L}_{\overline{\left\{\ | + | |$\mathscr{L}_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}}\{f\}(z;s)=$ |
|[[Derivation of Laplace transform for T=Closure of unit fractions|derivation]] | |[[Derivation of Laplace transform for T=Closure of unit fractions|derivation]] | ||
|- | |- |
Revision as of 21:28, 16 August 2015
The set $\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}=\left\{ 0,1,\dfrac{1}{2},\dfrac{1}{3},\ldots \right\}$, where the $\overline{\mathrm{overline}}$ denotes topological closure of this set in the usual topology on $\mathbb{R}$ is a time scale.
Forward jump: | $\sigma(t)=$ | derivation |
Forward graininess: | $\mu(t)=$ | derivation |
Backward jump: | $\rho(t)=$ | derivation |
Backward graininess: | $\nu(t)=$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t)=$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t)=$ | derivation |
$\Delta$-integral | $\displaystyle\int_s^t f(\tau) \Delta \tau=$ | derivation |
$\nabla$-integral | $\displaystyle\int_s^t f(\tau) \nabla \tau=$ | derivation |
$h_k(t,s)$ | $h_k(t,s)=$ | derivation |
$\hat{h}_k(t,s)$ | $\hat{h}_k(t,s)=$ | derivation |
$g_k(t,s)$ | $g_k(t,s)=$ | derivation |
$\hat{g}_k(t,s)$ | $\hat{g}_k(t,s)=$ | derivation |
$e_p(t,s)$ | $e_p(t,s)=$ | derivation |
$\hat{e}_p(t,s)$ | $\hat{e}_p(t,s)=$ | derivation |
Gaussian bell | $\mathbf{E}(t)=$ | derivation |
$\mathrm{sin}_p(t,s)=$ | $\sin_p(t,s)=$ | derivation |
$\mathrm{\sin}_1(t,s)$ | $\sin_1(t,s)=$ | derivation |
$\widehat{\sin}_p(t,s)$ | $\widehat{\sin}_p(t,s)=$ | derivation |
$\mathrm{\cos}_p(t,s)$ | $\cos_p(t,s)=$ | derivation |
$\mathrm{\cos}_1(t,s)$ | $\cos_1(t,s)=$ | derivation |
$\widehat{\cos}_p(t,s)$ | $\widehat{\cos}_p(t,s)=$ | derivation |
$\sinh_p(t,s)$ | $\sinh_p(t,s)=$ | derivation |
$\widehat{\sinh}_p(t,s)$ | $\widehat{\sinh}_p(t,s)=$ | derivation |
$\cosh_p(t,s)$ | $\cosh_p(t,s)=$ | derivation |
$\widehat{\cosh}_p(t,s)$ | $\widehat{\cosh}_p(t,s)=$ | derivation |
Gamma function | $\Gamma_{\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}}(x,s)=$ | derivation |
Euler-Cauchy logarithm | $L(t,s)=$ | derivation |
Bohner logarithm | $L_p(t,s)=$ | derivation |
Jackson logarithm | $\log_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}} g(t)=$ | derivation |
Mozyrska-Torres logarithm | $L_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}}(t)=$ | derivation |
Laplace transform | $\mathscr{L}_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}}\{f\}(z;s)=$ | derivation |
Hilger circle | derivation |
Examples of time scales |
||||||||
Real numbers |
Integers |
Multiples of integers |
Square integers |
Harmonic numbers |
Isolated points |
|||
nth root numbers |
Evenly spaced intervals |
Quantum, $q>1$ |
Quantum, $q<1$ |
Closure of unit fractions |
Cantor set |