Difference between revisions of "Closure of unit fractions"
From timescalewiki
(3 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
{| class="wikitable" | {| class="wikitable" | ||
− | |+$\mathbb{T}= \overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}} $ | + | |+$\mathbb{T}=\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$ |
|- | |- | ||
− | | | + | |[[Forward jump]]: |
− | | | + | |$\sigma(t)=\left\{ \begin{array}{ll} |
+ | 0 &; t=0 \\ | ||
+ | \dfrac{1}{k-1} &; t=\dfrac{1}{k}, \quad k \in \{2,3,\ldots\} | ||
+ | \end{array} \right.$ | ||
+ | |[[Derivation of forward jump for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Forward graininess]]: | ||
+ | |$\mu(t)=$ | ||
+ | |[[Derivation of forward graininess for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Backward jump]]: | ||
+ | |$\rho(t)=$ | ||
+ | |[[Derivation of backward jump for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Backward graininess]]: | ||
+ | |$\nu(t)=$ | ||
+ | |[[Derivation of backward graininess for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Delta derivative | $\Delta$-derivative]] | ||
+ | |$f^{\Delta}(t)=$ | ||
+ | |[[Derivation of delta derivative for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Nabla derivative | $\nabla$-derivative]] | ||
+ | |$f^{\nabla}(t)=$ | ||
+ | |[[Derivation of nabla derivative for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Delta integral | $\Delta$-integral]] | ||
+ | |$\displaystyle\int_s^t f(\tau) \Delta \tau=$ | ||
+ | |[[Derivation of delta integral for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Nabla integral | $\nabla$-integral]] | ||
+ | |$\displaystyle\int_s^t f(\tau) \nabla \tau=$ | ||
+ | |[[Derivation of nabla integral for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Delta hk|$h_k(t,s)$]] | ||
+ | |$h_k(t,s)=$ | ||
+ | |[[Derivation of delta hk for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Nabla hk|$\hat{h}_k(t,s)$]] | ||
+ | |$\hat{h}_k(t,s)=$ | ||
+ | |[[Derivation of nabla hk for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Delta gk|$g_k(t,s)$]] | ||
+ | |$g_k(t,s)=$ | ||
+ | |[[Derivation of delta gk for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Nabla gk|$\hat{g}_k(t,s)$]] | ||
+ | |$\hat{g}_k(t,s)=$ | ||
+ | |[[Derivation of nabla gk for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Delta exponential | $e_p(t,s)$]] | ||
+ | |$e_p(t,s)=$ | ||
+ | |[[Derivation of delta exponential T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Nabla exponential | $\hat{e}_p(t,s)$]] | ||
+ | |$\hat{e}_p(t,s)=$ | ||
+ | |[[Derivation of nabla exponential T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Gaussian bell]] | ||
+ | |$\mathbf{E}(t)=$ | ||
+ | |[[Derivation of Gaussian bell for T=Closure of unit fractions|derivation]] | ||
|- | |- | ||
− | | | + | |[[Delta sine | $\mathrm{sin}_p(t,s)=$]] |
− | |$\ | + | |$\sin_p(t,s)=$ |
− | \ | + | |[[Derivation of delta sin sub p for T=Closure of unit fractions|derivation]] |
− | + | |- | |
− | \ | + | |$\mathrm{\sin}_1(t,s)$ |
+ | |$\sin_1(t,s)=$ | ||
+ | |[[Derivation of delta sin sub 1 for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sine|$\widehat{\sin}_p(t,s)$]] | ||
+ | |$\widehat{\sin}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sine sub p for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosine|$\mathrm{\cos}_p(t,s)$]] | ||
+ | |$\cos_p(t,s)=$ | ||
+ | |[[Derivation of delta cos sub p for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\cos}_1(t,s)$ | ||
+ | |$\cos_1(t,s)=$ | ||
+ | |[[Derivation of delta cos sub 1 for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosine|$\widehat{\cos}_p(t,s)$]] | ||
+ | |$\widehat{\cos}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cos sub 1 for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Delta sinh|$\sinh_p(t,s)$]] | ||
+ | |$\sinh_p(t,s)=$ | ||
+ | |[[Derivation of delta sinh sub p for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sinh|$\widehat{\sinh}_p(t,s)$]] | ||
+ | |$\widehat{\sinh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sinh sub p for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosh|$\cosh_p(t,s)$]] | ||
+ | |$\cosh_p(t,s)=$ | ||
+ | |[[Derivation of delta cosh sub p for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosh|$\widehat{\cosh}_p(t,s)$]] | ||
+ | |$\widehat{\cosh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cosh sub p for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Gamma function]] | ||
+ | |$\Gamma_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}}(x,s)=$ | ||
+ | |[[Derivation of gamma function for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Euler-Cauchy logarithm]] | ||
+ | |$L(t,s)=$ | ||
+ | |[[Derivation of Euler-Cauchy logarithm for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Bohner logarithm]] | ||
+ | |$L_p(t,s)=$ | ||
+ | |[[Derivation of the Bohner logarithm for T=Closure of unit fractions|derivation]] | ||
+ | |- | ||
+ | |[[Jackson logarithm]] | ||
+ | |$\log_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}} g(t)=$ | ||
+ | |[[Derivation of the Jackson logarithm for T=Closure of unit fractions|derivation]] | ||
|- | |- | ||
− | | | + | |[[Mozyrska-Torres logarithm]] |
− | |$\ | + | |$L_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}}(t)=$ |
− | + | |[[Derivation of the Mozyrska-Torres logarithm for T=Closure of unit fractions|derivation]] | |
− | |||
− | \ | ||
|- | |- | ||
− | |[[ | + | |[[Laplace transform]] |
− | |$ | + | |$\mathscr{L}_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}}\{f\}(z;s)=$ |
− | \ | + | |[[Derivation of Laplace transform for T=Closure of unit fractions|derivation]] |
− | \ | ||
− | |||
|- | |- | ||
− | |[[ | + | |[[Hilger circle]] |
− | | | + | | |
+ | |[[Derivation of Hilger circle for T=Closure of unit fractions|derivation]] | ||
|- | |- | ||
− | |||
− | |||
|} | |} | ||
+ | |||
<center>{{:Time scales footer}}</center> | <center>{{:Time scales footer}}</center> |
Latest revision as of 22:32, 23 February 2016
The set $\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}=\left\{ 0,1,\dfrac{1}{2},\dfrac{1}{3},\ldots \right\}$, where the $\overline{\mathrm{overline}}$ denotes topological closure of this set in the usual topology on $\mathbb{R}$ is a time scale.
Forward jump: | $\sigma(t)=\left\{ \begin{array}{ll} 0 &; t=0 \\ \dfrac{1}{k-1} &; t=\dfrac{1}{k}, \quad k \in \{2,3,\ldots\} \end{array} \right.$ | derivation |
Forward graininess: | $\mu(t)=$ | derivation |
Backward jump: | $\rho(t)=$ | derivation |
Backward graininess: | $\nu(t)=$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t)=$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t)=$ | derivation |
$\Delta$-integral | $\displaystyle\int_s^t f(\tau) \Delta \tau=$ | derivation |
$\nabla$-integral | $\displaystyle\int_s^t f(\tau) \nabla \tau=$ | derivation |
$h_k(t,s)$ | $h_k(t,s)=$ | derivation |
$\hat{h}_k(t,s)$ | $\hat{h}_k(t,s)=$ | derivation |
$g_k(t,s)$ | $g_k(t,s)=$ | derivation |
$\hat{g}_k(t,s)$ | $\hat{g}_k(t,s)=$ | derivation |
$e_p(t,s)$ | $e_p(t,s)=$ | derivation |
$\hat{e}_p(t,s)$ | $\hat{e}_p(t,s)=$ | derivation |
Gaussian bell | $\mathbf{E}(t)=$ | derivation |
$\mathrm{sin}_p(t,s)=$ | $\sin_p(t,s)=$ | derivation |
$\mathrm{\sin}_1(t,s)$ | $\sin_1(t,s)=$ | derivation |
$\widehat{\sin}_p(t,s)$ | $\widehat{\sin}_p(t,s)=$ | derivation |
$\mathrm{\cos}_p(t,s)$ | $\cos_p(t,s)=$ | derivation |
$\mathrm{\cos}_1(t,s)$ | $\cos_1(t,s)=$ | derivation |
$\widehat{\cos}_p(t,s)$ | $\widehat{\cos}_p(t,s)=$ | derivation |
$\sinh_p(t,s)$ | $\sinh_p(t,s)=$ | derivation |
$\widehat{\sinh}_p(t,s)$ | $\widehat{\sinh}_p(t,s)=$ | derivation |
$\cosh_p(t,s)$ | $\cosh_p(t,s)=$ | derivation |
$\widehat{\cosh}_p(t,s)$ | $\widehat{\cosh}_p(t,s)=$ | derivation |
Gamma function | $\Gamma_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}}(x,s)=$ | derivation |
Euler-Cauchy logarithm | $L(t,s)=$ | derivation |
Bohner logarithm | $L_p(t,s)=$ | derivation |
Jackson logarithm | $\log_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}} g(t)=$ | derivation |
Mozyrska-Torres logarithm | $L_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}}(t)=$ | derivation |
Laplace transform | $\mathscr{L}_{\overline{\left\{\frac{1}{n} \colon n \in \mathbb{Z}^+\right\}}}\{f\}(z;s)=$ | derivation |
Hilger circle | derivation |
Examples of time scales |
||||||||
Real numbers |
Integers |
Multiples of integers |
Square integers |
Harmonic numbers |
Isolated points |
|||
nth root numbers |
Evenly spaced intervals |
Quantum, $q>1$ |
Quantum, $q<1$ |
Closure of unit fractions |
Cantor set |