Difference between revisions of "Multiples of integers"
From timescalewiki
(11 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The set $h\mathbb{Z}=\{\ldots,-2h,-h,0,h,2h,\ldots\}$ of multiples of the integers is a [[time scale]]. | The set $h\mathbb{Z}=\{\ldots,-2h,-h,0,h,2h,\ldots\}$ of multiples of the integers is a [[time scale]]. | ||
− | [[File:HZtime scale.png]] | + | [[File:HZtime scale.png|500px]] |
{| class="wikitable" | {| class="wikitable" | ||
|+$\mathbb{T}=h\mathbb{Z}$ | |+$\mathbb{T}=h\mathbb{Z}$ | ||
|- | |- | ||
− | | | + | |[[Forward jump]]: |
− | |||
− | |||
− | |||
|$\sigma(t)=t+h$ | |$\sigma(t)=t+h$ | ||
+ | |[[Derivation of forward jump for T=hZ|derivation]] | ||
|- | |- | ||
− | | | + | |[[Forward graininess]]: |
|$\mu(t)=h$ | |$\mu(t)=h$ | ||
+ | |[[Derivation of forward graininess for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Backward jump]]: | ||
+ | |$\rho(t)=t-h$ | ||
+ | |[[Derivation of backward jump for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Backward graininess]]: | ||
+ | |$\nu(t)=h$ | ||
+ | |[[Derivation of backward graininess for T=hZ|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Delta derivative | $\Delta$-derivative]] |
|$f^{\Delta}(t)=\dfrac{f(t+h)-f(t)}{h}$ | |$f^{\Delta}(t)=\dfrac{f(t+h)-f(t)}{h}$ | ||
+ | |[[Derivation of delta derivative for T=hZ|derivation]] | ||
|- | |- | ||
− | |[[Nabla derivative | $\nabla$-derivative | + | |[[Nabla derivative | $\nabla$-derivative]] |
− | |$f^{\nabla}(t) = \dfrac{f(t)-f(t-h)}{h}$ | + | |$f^{\nabla}(t)=\dfrac{f(t)-f(t-h)}{h}$ |
+ | |[[Derivation of nabla derivative for T=hZ|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Delta integral | $\Delta$-integral]] |
− | | $\displaystyle\int_s^t f(\tau) \Delta \tau = | + | |$\displaystyle\int_s^t f(\tau) \Delta \tau=$ |
+ | |[[Derivation of delta integral for T=hZ|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Nabla integral | $\nabla$-integral]] |
+ | |$\displaystyle\int_s^t f(\tau) \nabla \tau=$ | ||
+ | |[[Derivation of nabla integral for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Delta hk|$h_k(t,s)$]] | ||
|$h_k(t,s) = \dfrac{1}{k!} \displaystyle\prod_{\ell=0}^{k-1}(t-\ell h-s)$ | |$h_k(t,s) = \dfrac{1}{k!} \displaystyle\prod_{\ell=0}^{k-1}(t-\ell h-s)$ | ||
+ | |[[Derivation of delta hk for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Nabla hk|$\hat{h}_k(t,s)$]] | ||
+ | |$\hat{h}_k(t,s)=$ | ||
+ | |[[Derivation of nabla hk for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Delta gk|$g_k(t,s)$]] | ||
+ | |$g_k(t,s)=$ | ||
+ | |[[Derivation of delta gk for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Nabla gk|$\hat{g}_k(t,s)$]] | ||
+ | |$\hat{g}_k(t,s)=$ | ||
+ | |[[Derivation of nabla gk for T=hZ|derivation]] | ||
|- | |- | ||
− | |[[Delta exponential | $ | + | |[[Delta exponential | $e_p(t,s)$]] |
− | | $ | + | |$e_p(t,s)=\left\{ \begin{array}{ll} |
− | e_p(t,s) | + | \displaystyle\prod_{k=\frac{t}{h}}^{\frac{s}{h}-1} \dfrac{1}{1+hp(hk)} &; t < s \\ |
− | + | 1 &; t=s \\ | |
− | &= \displaystyle\prod_{k=\frac{s}{h}}^{\frac{t}{h}-1} | + | \displaystyle\prod_{k=\frac{s}{h}}^{\frac{t}{h}-1} 1+hp(hk) &; t>s. |
− | \end{array}$ | + | \end{array} \right.$ |
+ | |[[Derivation of delta exponential T=hZ|derivation]] | ||
|- | |- | ||
− | | [[Nabla exponential | $\ | + | |[[Nabla exponential | $\hat{e}_p(t,s)$]] |
− | | $\hat{e}_p(t,s)=\left\{ \begin{array}{ll} | + | |$\hat{e}_p(t,s)=\left\{ \begin{array}{ll} |
− | \displaystyle\prod_{k=\frac{ | + | \displaystyle\prod_{k=\frac{t}{h}+1}^{\frac{s}{h}} (1-hp(hk)) &; t \lt s \\ |
1 &; t=s \\ | 1 &; t=s \\ | ||
− | \prod_{k=\frac{ | + | \displaystyle\prod_{k=\frac{s}{h}+1}^{\frac{t}{h}} \dfrac{1}{1-hp(hk)} &; t \gt s. |
\end{array} \right.$ | \end{array} \right.$ | ||
+ | |[[Derivation of nabla exponential T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Gaussian bell]] | ||
+ | |$\mathbf{E}(t)=\left[(1+h)^{\frac{1}{h}} \right]^{\frac{-t(t-h)}{2}}$ | ||
+ | |[[Derivation of Gaussian bell for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Delta sine | $\mathrm{sin}_p(t,s)=$]] | ||
+ | |$\sin_p(t,s)=$ | ||
+ | |[[Derivation of delta sin sub p for T=hZ|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\sin}_1(t,s)$ | ||
+ | |$\sin_1(t,s)=$ | ||
+ | |[[Derivation of delta sin sub 1 for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sine|$\widehat{\sin}_p(t,s)$]] | ||
+ | |$\widehat{\sin}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sine sub p for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosine|$\mathrm{\cos}_p(t,s)$]] | ||
+ | |$\cos_p(t,s)=$ | ||
+ | |[[Derivation of delta cos sub p for T=hZ|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\cos}_1(t,s)$ | ||
+ | |$\cos_1(t,s)=$ | ||
+ | |[[Derivation of delta cos sub 1 for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosine|$\widehat{\cos}_p(t,s)$]] | ||
+ | |$\widehat{\cos}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cos sub 1 for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Delta sinh|$\sinh_p(t,s)$]] | ||
+ | |$\sinh_p(t,s)=$ | ||
+ | |[[Derivation of delta sinh sub p for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sinh|$\widehat{\sinh}_p(t,s)$]] | ||
+ | |$\widehat{\sinh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sinh sub p for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosh|$\cosh_p(t,s)$]] | ||
+ | |$\cosh_p(t,s)=$ | ||
+ | |[[Derivation of delta cosh sub p for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosh|$\widehat{\cosh}_p(t,s)$]] | ||
+ | |$\widehat{\cosh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cosh sub p for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Gamma function]] | ||
+ | |$\Gamma_{h\mathbb{Z}}(t;s)=h\displaystyle\sum_{k=0}^{\infty} \left( \displaystyle\prod_{j=s}^{k-1} \dfrac{j+x}{j+1} \right) \dfrac{1}{(1+h)^{k+1}}$ | ||
+ | |[[Derivation of gamma function for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Euler-Cauchy logarithm]] | ||
+ | |$L(t,s)=$ | ||
+ | |[[Derivation of Euler-Cauchy logarithm for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Bohner logarithm]] | ||
+ | |$L_p(t,s)=$ | ||
+ | |[[Derivation of the Bohner logarithm for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Jackson logarithm]] | ||
+ | |$\log_{h\mathbb{Z}} g(t)=$ | ||
+ | |[[Derivation of the Jackson logarithm for T=hZ|derivation]] | ||
|- | |- | ||
− | |[[Hilger circle]] | + | |[[Mozyrska-Torres logarithm]] |
− | | [[File:Hilgercircle%2CT%3DhZ.png|250px]] | + | |$L_{h\mathbb{Z}}(t)=$ |
+ | |[[Derivation of the Mozyrska-Torres logarithm for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Laplace transform]] | ||
+ | |$\mathscr{L}_{h\mathbb{Z}}\{f\}(z;s)=$ | ||
+ | |[[Derivation of Laplace transform for T=hZ|derivation]] | ||
+ | |- | ||
+ | |[[Hilger circle]] | ||
+ | |[[File:Hilgercircle%2CT%3DhZ.png|250px]] | ||
+ | |[[Derivation of Hilger circle for T=hZ|derivation]] | ||
|- | |- | ||
− | |||
− | |||
|} | |} | ||
+ | |||
=References= | =References= | ||
+ | *{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=Real numbers|next=}}: Section 2.1(a) | ||
+ | * {{PaperReference|Partial dynamic equations on time scales|2006|Billy Jackson||prev=Quantum q greater than 1|next=Forward jump}}: Appendix | ||
[http://pi.unl.edu/~apeterson1/higgins-peterson.pdf Cauchy Functions and Taylor's Formula for Time Scales T] | [http://pi.unl.edu/~apeterson1/higgins-peterson.pdf Cauchy Functions and Taylor's Formula for Time Scales T] | ||
+ | |||
+ | <center>{{:Time scales footer}}</center> |
Latest revision as of 15:55, 15 January 2023
The set $h\mathbb{Z}=\{\ldots,-2h,-h,0,h,2h,\ldots\}$ of multiples of the integers is a time scale.
Forward jump: | $\sigma(t)=t+h$ | derivation |
Forward graininess: | $\mu(t)=h$ | derivation |
Backward jump: | $\rho(t)=t-h$ | derivation |
Backward graininess: | $\nu(t)=h$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t)=\dfrac{f(t+h)-f(t)}{h}$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t)=\dfrac{f(t)-f(t-h)}{h}$ | derivation |
$\Delta$-integral | $\displaystyle\int_s^t f(\tau) \Delta \tau=$ | derivation |
$\nabla$-integral | $\displaystyle\int_s^t f(\tau) \nabla \tau=$ | derivation |
$h_k(t,s)$ | $h_k(t,s) = \dfrac{1}{k!} \displaystyle\prod_{\ell=0}^{k-1}(t-\ell h-s)$ | derivation |
$\hat{h}_k(t,s)$ | $\hat{h}_k(t,s)=$ | derivation |
$g_k(t,s)$ | $g_k(t,s)=$ | derivation |
$\hat{g}_k(t,s)$ | $\hat{g}_k(t,s)=$ | derivation |
$e_p(t,s)$ | $e_p(t,s)=\left\{ \begin{array}{ll} \displaystyle\prod_{k=\frac{t}{h}}^{\frac{s}{h}-1} \dfrac{1}{1+hp(hk)} &; t < s \\ 1 &; t=s \\ \displaystyle\prod_{k=\frac{s}{h}}^{\frac{t}{h}-1} 1+hp(hk) &; t>s. \end{array} \right.$ | derivation |
$\hat{e}_p(t,s)$ | $\hat{e}_p(t,s)=\left\{ \begin{array}{ll} \displaystyle\prod_{k=\frac{t}{h}+1}^{\frac{s}{h}} (1-hp(hk)) &; t \lt s \\ 1 &; t=s \\ \displaystyle\prod_{k=\frac{s}{h}+1}^{\frac{t}{h}} \dfrac{1}{1-hp(hk)} &; t \gt s. \end{array} \right.$ | derivation |
Gaussian bell | $\mathbf{E}(t)=\left[(1+h)^{\frac{1}{h}} \right]^{\frac{-t(t-h)}{2}}$ | derivation |
$\mathrm{sin}_p(t,s)=$ | $\sin_p(t,s)=$ | derivation |
$\mathrm{\sin}_1(t,s)$ | $\sin_1(t,s)=$ | derivation |
$\widehat{\sin}_p(t,s)$ | $\widehat{\sin}_p(t,s)=$ | derivation |
$\mathrm{\cos}_p(t,s)$ | $\cos_p(t,s)=$ | derivation |
$\mathrm{\cos}_1(t,s)$ | $\cos_1(t,s)=$ | derivation |
$\widehat{\cos}_p(t,s)$ | $\widehat{\cos}_p(t,s)=$ | derivation |
$\sinh_p(t,s)$ | $\sinh_p(t,s)=$ | derivation |
$\widehat{\sinh}_p(t,s)$ | $\widehat{\sinh}_p(t,s)=$ | derivation |
$\cosh_p(t,s)$ | $\cosh_p(t,s)=$ | derivation |
$\widehat{\cosh}_p(t,s)$ | $\widehat{\cosh}_p(t,s)=$ | derivation |
Gamma function | $\Gamma_{h\mathbb{Z}}(t;s)=h\displaystyle\sum_{k=0}^{\infty} \left( \displaystyle\prod_{j=s}^{k-1} \dfrac{j+x}{j+1} \right) \dfrac{1}{(1+h)^{k+1}}$ | derivation |
Euler-Cauchy logarithm | $L(t,s)=$ | derivation |
Bohner logarithm | $L_p(t,s)=$ | derivation |
Jackson logarithm | $\log_{h\mathbb{Z}} g(t)=$ | derivation |
Mozyrska-Torres logarithm | $L_{h\mathbb{Z}}(t)=$ | derivation |
Laplace transform | $\mathscr{L}_{h\mathbb{Z}}\{f\}(z;s)=$ | derivation |
Hilger circle | derivation |
References
- Robert J. Marks II, Ian A. Gravagne and John M. Davis: A generalized Fourier transform and convolution on time scales (2008)... (previous): Section 2.1(a)
- Billy Jackson: Partial dynamic equations on time scales (2006)... (previous)... (next): Appendix
Cauchy Functions and Taylor's Formula for Time Scales T