Difference between revisions of "Quantum q greater than 1"

From timescalewiki
Jump to: navigation, search
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Let $q>1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{-2}, q^{-1}, 1, q, q^2, \ldots \}$ of quantum numbers is a [[time scale]].
 
Let $q>1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{-2}, q^{-1}, 1, q, q^2, \ldots \}$ of quantum numbers is a [[time scale]].
 +
  
 
{| class="wikitable"
 
{| class="wikitable"
|+$\mathbb{T}=\overline{q^{\mathbb{Z}}}, q>1$
+
|+$\mathbb{T}=\overline{q^{\mathbb{Z}}}$
 
|-
 
|-
|Generic element $t\in \mathbb{T}$:
+
|[[Forward jump]]:
|For some $n \in \mathbb{Z}, t =q^n$
+
|$\sigma(t)=qt$
 +
|[[Derivation of forward jump for T=Quantum q greater than 1|derivation]]
 
|-
 
|-
|Jump operator:
+
|[[Forward graininess]]:
|$\sigma(t)=qt$
+
|$\mu(t)=t(q-1)$
 +
|[[Derivation of forward graininess for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Backward jump]]:
 +
|$\rho(t)=$
 +
|[[Derivation of backward jump for T=Quantum q greater than 1|derivation]]
 
|-
 
|-
|Graininess operator:
+
|[[Backward graininess]]:
|$\begin{array}{ll}
+
|$\nu(t)=$
\mu(t)&=qt-t\\
+
|[[Derivation of backward graininess for T=Quantum q greater than 1|derivation]]
&=t(q-1)
 
\end{array}$
 
 
|-
 
|-
|[[Delta_derivative | $\Delta$-derivative:]]
+
|[[Delta derivative | $\Delta$-derivative]]
| $f^{\Delta}(t)= \left\{ \begin{array}{ll}
+
|$f^{\Delta}(t)= \left\{ \begin{array}{ll}
 
\dfrac{f(qt)-f(t)}{t(q-1)} &; t\neq 0 \\
 
\dfrac{f(qt)-f(t)}{t(q-1)} &; t\neq 0 \\
 
\displaystyle\lim_{h \rightarrow 0} \dfrac{f(h)-f(0)}{h} &; t=0
 
\displaystyle\lim_{h \rightarrow 0} \dfrac{f(h)-f(0)}{h} &; t=0
 
\end{array} \right.$
 
\end{array} \right.$
 +
|[[Derivation of delta derivative for T=Quantum q greater than 1|derivation]]
 
|-
 
|-
|[[Delta_integral | $\Delta$-integral:]]
+
|[[Nabla derivative | $\nabla$-derivative]]
| $\begin{array}{ll}
+
|$f^{\nabla}(t)=$
\displaystyle\int_s^t f(\tau) \Delta \tau &= \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} q^{k-1} (1-q) f(q^k) \\
+
|[[Derivation of nabla derivative for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Delta integral | $\Delta$-integral]]
 +
|$\begin{array}{ll}
 +
\displaystyle\int_s^t f(\tau) \Delta \tau &= \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} q^{k} (q-1) f(q^k) \\
 
\end{array}$
 
\end{array}$
 +
|[[Derivation of delta integral for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Nabla integral | $\nabla$-integral]]
 +
|$\displaystyle\int_s^t f(\tau) \nabla \tau=$
 +
|[[Derivation of nabla integral for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Delta hk|$h_k(t,s)$]]
 +
|$h_k(t,s)=\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^ns}{\sum_{i=0}^n q^i}$
 +
|[[Derivation of delta hk for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Nabla hk|$\hat{h}_k(t,s)$]]
 +
|$\hat{h}_k(t,s)=$
 +
|[[Derivation of nabla hk for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Delta gk|$g_k(t,s)$]]
 +
|$g_k(t,s)=$
 +
|[[Derivation of delta gk for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Nabla gk|$\hat{g}_k(t,s)$]]
 +
|$\hat{g}_k(t,s)=$
 +
|[[Derivation of nabla gk for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Delta exponential | $e_p(t,s)$]]
 +
|$e_p(t,s)=\displaystyle\prod_{k=\log_q(s)}^{\log_q(t)-1} 1 + p(q^k)q^{k}(q-1)$
 +
|[[Derivation of delta exponential T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Nabla exponential | $\hat{e}_p(t,s)$]]
 +
|$\hat{e}_p(t,s)=$
 +
|[[Derivation of nabla exponential T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Gaussian bell]]
 +
|$\mathbf{E}(t)=$
 +
|[[Derivation of Gaussian bell for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Delta sine | $\mathrm{sin}_p(t,s)=$]]
 +
|$\sin_p(t,s)=$
 +
|[[Derivation of delta sin sub p for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|$\mathrm{\sin}_1(t,s)$
 +
|$\sin_1(t,s)=$
 +
|[[Derivation of delta sin sub 1 for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Nabla sine|$\widehat{\sin}_p(t,s)$]]
 +
|$\widehat{\sin}_p(t,s)=$
 +
|[[Derivation of nabla sine sub p for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Delta cosine|$\mathrm{\cos}_p(t,s)$]]
 +
|$\cos_p(t,s)=$
 +
|[[Derivation of delta cos sub p for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|$\mathrm{\cos}_1(t,s)$
 +
|$\cos_1(t,s)=$
 +
|[[Derivation of delta cos sub 1 for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Nabla cosine|$\widehat{\cos}_p(t,s)$]]
 +
|$\widehat{\cos}_p(t,s)=$
 +
|[[Derivation of nabla cos sub 1 for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Delta sinh|$\sinh_p(t,s)$]]
 +
|$\sinh_p(t,s)=$
 +
|[[Derivation of delta sinh sub p for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Nabla sinh|$\widehat{\sinh}_p(t,s)$]]
 +
|$\widehat{\sinh}_p(t,s)=$
 +
|[[Derivation of nabla sinh sub p for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Delta cosh|$\cosh_p(t,s)$]]
 +
|$\cosh_p(t,s)=$
 +
|[[Derivation of delta cosh sub p for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Nabla cosh|$\widehat{\cosh}_p(t,s)$]]
 +
|$\widehat{\cosh}_p(t,s)=$
 +
|[[Derivation of nabla cosh sub p for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Gamma function]]
 +
|$\Gamma_{\overline{q^{\mathbb{Z}}}}(x,s)=$
 +
|[[Derivation of gamma function for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Euler-Cauchy logarithm]]
 +
|$L(t,s)=$
 +
|[[Derivation of Euler-Cauchy logarithm for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Bohner logarithm]]
 +
|$L_p(t,s)=$
 +
|[[Derivation of the Bohner logarithm for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Jackson logarithm]]
 +
|$\log_{\overline{q^{\mathbb{Z}}}} g(t)=$
 +
|[[Derivation of the Jackson logarithm for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Mozyrska-Torres logarithm]]
 +
|$L_{\overline{q^{\mathbb{Z}}}}(t)=$
 +
|[[Derivation of the Mozyrska-Torres logarithm for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Laplace transform]]
 +
|$\mathscr{L}_{\overline{q^{\mathbb{Z}}}}\{f\}(z;s)=$
 +
|[[Derivation of Laplace transform for T=Quantum q greater than 1|derivation]]
 +
|-
 +
|[[Hilger circle]]
 +
|
 +
|[[Derivation of Hilger circle for T=Quantum q greater than 1|derivation]]
 
|-
 
|-
|[[Exponential_functions | Exponential function]]:
 
| $\begin{array}{ll}
 
e_p(t,s) &= \exp \left( \displaystyle\int_{s}^{t} \dfrac{1}{\mu(\tau)} \log( 1 + p(\tau) \mu(\tau) ) \Delta \tau \right) \\
 
&= \exp \left( \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} \mu(q^k) \dfrac{1}{\mu(q^k)} \log(1 + p(q^k)\mu(q^k)) \right) \\
 
&= \exp \left( \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} \log(1 + p(q^k)\mu(q^k)) \right) \\
 
&= \displaystyle\prod_{k=\log_q(s)}^{\log_q(t)-1} 1 + p(q^k)q^{k}(q-1)
 
\end{array}$
 
 
|}
 
|}
 +
 +
=References=
 +
* {{PaperReference|Partial dynamic equations on time scales|2006|Billy Jackson||prev=Real numbers|next=Multiples of integers}}: Appendix
 +
 +
<center>{{:Time scales footer}}</center>

Latest revision as of 14:49, 15 January 2023

Let $q>1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{-2}, q^{-1}, 1, q, q^2, \ldots \}$ of quantum numbers is a time scale.


$\mathbb{T}=\overline{q^{\mathbb{Z}}}$
Forward jump: $\sigma(t)=qt$ derivation
Forward graininess: $\mu(t)=t(q-1)$ derivation
Backward jump: $\rho(t)=$ derivation
Backward graininess: $\nu(t)=$ derivation
$\Delta$-derivative $f^{\Delta}(t)= \left\{ \begin{array}{ll} \dfrac{f(qt)-f(t)}{t(q-1)} &; t\neq 0 \\ \displaystyle\lim_{h \rightarrow 0} \dfrac{f(h)-f(0)}{h} &; t=0 \end{array} \right.$ derivation
$\nabla$-derivative $f^{\nabla}(t)=$ derivation
$\Delta$-integral $\begin{array}{ll} \displaystyle\int_s^t f(\tau) \Delta \tau &= \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} q^{k} (q-1) f(q^k) \\ \end{array}$ derivation
$\nabla$-integral $\displaystyle\int_s^t f(\tau) \nabla \tau=$ derivation
$h_k(t,s)$ $h_k(t,s)=\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^ns}{\sum_{i=0}^n q^i}$ derivation
$\hat{h}_k(t,s)$ $\hat{h}_k(t,s)=$ derivation
$g_k(t,s)$ $g_k(t,s)=$ derivation
$\hat{g}_k(t,s)$ $\hat{g}_k(t,s)=$ derivation
$e_p(t,s)$ $e_p(t,s)=\displaystyle\prod_{k=\log_q(s)}^{\log_q(t)-1} 1 + p(q^k)q^{k}(q-1)$ derivation
$\hat{e}_p(t,s)$ $\hat{e}_p(t,s)=$ derivation
Gaussian bell $\mathbf{E}(t)=$ derivation
$\mathrm{sin}_p(t,s)=$ $\sin_p(t,s)=$ derivation
$\mathrm{\sin}_1(t,s)$ $\sin_1(t,s)=$ derivation
$\widehat{\sin}_p(t,s)$ $\widehat{\sin}_p(t,s)=$ derivation
$\mathrm{\cos}_p(t,s)$ $\cos_p(t,s)=$ derivation
$\mathrm{\cos}_1(t,s)$ $\cos_1(t,s)=$ derivation
$\widehat{\cos}_p(t,s)$ $\widehat{\cos}_p(t,s)=$ derivation
$\sinh_p(t,s)$ $\sinh_p(t,s)=$ derivation
$\widehat{\sinh}_p(t,s)$ $\widehat{\sinh}_p(t,s)=$ derivation
$\cosh_p(t,s)$ $\cosh_p(t,s)=$ derivation
$\widehat{\cosh}_p(t,s)$ $\widehat{\cosh}_p(t,s)=$ derivation
Gamma function $\Gamma_{\overline{q^{\mathbb{Z}}}}(x,s)=$ derivation
Euler-Cauchy logarithm $L(t,s)=$ derivation
Bohner logarithm $L_p(t,s)=$ derivation
Jackson logarithm $\log_{\overline{q^{\mathbb{Z}}}} g(t)=$ derivation
Mozyrska-Torres logarithm $L_{\overline{q^{\mathbb{Z}}}}(t)=$ derivation
Laplace transform $\mathscr{L}_{\overline{q^{\mathbb{Z}}}}\{f\}(z;s)=$ derivation
Hilger circle derivation

References

Examples of time scales

$\Huge\mathbb{R}$
Real numbers
$\Huge\mathbb{Z}$
Integers
$\Huge{h\mathbb{Z}}$
Multiples of integers
$\Huge\mathbb{Z}^2$
Square integers
$\Huge\mathbb{H}$
Harmonic numbers
$\Huge\mathbb{T}_{\mathrm{iso}}$
Isolated points
$\Huge\sqrt[n]{\mathbb{N}_0}$
nth root numbers
$\Huge\mathbb{P}_{a,b}$
Evenly spaced intervals
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q>1$
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q<1$
$\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$
Closure of unit fractions
$\Huge\mathcal{C}$
Cantor set