Difference between revisions of "Integers"
From timescalewiki
(23 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
|+$\mathbb{T}=\mathbb{Z}$ | |+$\mathbb{T}=\mathbb{Z}$ | ||
|- | |- | ||
− | | | + | |[[Forward jump]]: |
− | |||
− | |||
− | |||
|$\sigma(t)=t+1$ | |$\sigma(t)=t+1$ | ||
+ | |[[Derivation of forward jump for T=Z|derivation]] | ||
|- | |- | ||
− | | | + | |[[Forward graininess]]: |
|$\mu(t)=1$ | |$\mu(t)=1$ | ||
+ | |[[Derivation of forward graininess for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Backward jump]]: | ||
+ | |$\rho(t)=t-1$ | ||
+ | |[[Derivation of backward jump for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Backward graininess]]: | ||
+ | |$\nu(t)=1$ | ||
+ | |[[Derivation of backward graininess for T=Z|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Delta derivative | $\Delta$-derivative]] |
|$f^{\Delta}(t)=f(t+1)-f(t)$ | |$f^{\Delta}(t)=f(t+1)-f(t)$ | ||
+ | |[[Derivation of delta derivative for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Nabla derivative | $\nabla$-derivative]] | ||
+ | |$f^{\nabla}(t)=f(t)-f(t-1)$ | ||
+ | |[[Derivation of nabla derivative for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Delta integral | $\Delta$-integral]] | ||
+ | |$\displaystyle\int_s^t f(\tau) \Delta \tau=\displaystyle\int_s^t f(\tau) \Delta \tau = \left\{ \begin{array}{ll} | ||
+ | \displaystyle\sum_{k=s}^{t-1} f(k) &; t \gt s \\ | ||
+ | 0 &; t=s \\ | ||
+ | -\displaystyle\sum_{k=t}^{s-1} f(k) &; t \lt s | ||
+ | \end{array} \right.$ | ||
+ | |[[Derivation of delta integral for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Nabla integral | $\nabla$-integral]] | ||
+ | |$\displaystyle\int_s^t f(\tau) \nabla \tau=\displaystyle\int_s^t f(\tau) \nabla \tau = \left\{ \begin{array}{ll} | ||
+ | \displaystyle\sum_{k=s+1}^t f(k) &; t>s \\ | ||
+ | 0 &; t=s \\ | ||
+ | -\displaystyle\sum_{k=t+1}^s f(k) &; t\lt s | ||
+ | \end{array} \right.$ | ||
+ | |[[Derivation of nabla integral for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Delta hk|$h_k(t,s)$]] | ||
+ | |$h_k(t,s)=\dfrac{(t-s)^{\underline{k}}}{k!}$ | ||
+ | |[[Derivation of delta hk for T=Z|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Nabla hk|$\hat{h}_k(t,s)$]] |
− | | $\ | + | |$\hat{h}_k(t,s)=\dfrac{(t-s)^{\overline{k}}}{k!}$ |
+ | |[[Derivation of nabla hk for T=Z|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Delta gk|$g_k(t,s)$]] |
− | | $\ | + | |$g_k(t,s)=$ |
− | e_p(t,s) | + | |[[Derivation of delta gk for T=Z|derivation]] |
− | + | |- | |
− | &= \displaystyle\prod_{k= | + | |[[Nabla gk|$\hat{g}_k(t,s)$]] |
+ | |$\hat{g}_k(t,s)=$ | ||
+ | |[[Derivation of nabla gk for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Delta exponential | $e_p(t,s)$]] | ||
+ | |$e_p(t,s)=\left\{ \begin{array}{ll} | ||
+ | \displaystyle\prod_{k=t}^{s-1} \dfrac{1}{1+p(k)} &; t < s \\ | ||
+ | 1 &; t=s \\ | ||
+ | \displaystyle\prod_{k=s}^{t-1} 1+p(k) &; t>s. | ||
+ | \end{array} \right.$ | ||
+ | |[[Derivation of delta exponential T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Nabla exponential | $\hat{e}_p(t,s)$]] | ||
+ | |$\hat{e}_p(t,s)=$ | ||
+ | |[[Derivation of nabla exponential T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Gaussian bell]] | ||
+ | |$\mathbf{E}(t)=2^{\frac{-t(t-1)}{2}}$ | ||
+ | |[[Derivation of Gaussian bell for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Delta sine | $\mathrm{sin}_p(t,s)$]] | ||
+ | |$\sin_p(t,s) = \left\{ \begin{array}{ll} | ||
+ | \dfrac{\displaystyle\prod_{k=s}^{t-1}1+ip(k) - \displaystyle\prod_{k=s}^{t-1}1-ip(k)}{2i} &; t>s \\ | ||
+ | 0 &; t=s \\ | ||
+ | \dfrac{\displaystyle\prod_{k=t}^{s-1} \frac{1}{1+ip(k)} - \displaystyle\prod_{k=t}^{s-1} \frac{1}{1-ip(k)}}{2i} &; t<s | ||
+ | \end{array} \right.$ | ||
+ | |[[Derivation of delta sin sub p for T=Z|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\sin}_1(t,s)$ | ||
+ | |$\sin_1(t,s)=$ | ||
+ | |[[Derivation of delta sin sub 1 for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sine|$\widehat{\sin}_p(t,s)$]] | ||
+ | |$\widehat{\sin}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sine sub p for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosine|$\mathrm{\cos}_p(t,s)$]] | ||
+ | |$\cos_p(t,s)=\begin{array}{ll} | ||
+ | \cos_p(t,t_0) &= \dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2} \\ | ||
+ | &= \dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) + \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2} | ||
+ | \end{array}$ | ||
+ | |[[Derivation of delta cos sub p for T=Z|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\cos}_1(t,s)$ | ||
+ | |$\cos_1(t,s)=\begin{array}{ll} | ||
+ | \cos_1(t,0) &= \dfrac{(1+i)^{t}+(1-i)^{t}}{2} \\ | ||
+ | &= \dfrac{\displaystyle\sum_{k=0}^{t} {t \choose k} i^k + \displaystyle\sum_{k=0}^{t} (-1)^k {t \choose k} i^k}{2} | ||
\end{array}$ | \end{array}$ | ||
+ | |[[Derivation of delta cos sub 1 for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosine|$\widehat{\cos}_p(t,s)$]] | ||
+ | |$\widehat{\cos}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cos sub 1 for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Delta sinh|$\sinh_p(t,s)$]] | ||
+ | |$\sinh_p(t,s)=$ | ||
+ | |[[Derivation of delta sinh sub p for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sinh|$\widehat{\sinh}_p(t,s)$]] | ||
+ | |$\widehat{\sinh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sinh sub p for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosh|$\cosh_p(t,s)$]] | ||
+ | |$\cosh_p(t,s)=$ | ||
+ | |[[Derivation of delta cosh sub p for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosh|$\widehat{\cosh}_p(t,s)$]] | ||
+ | |$\widehat{\cosh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cosh sub p for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Gamma function]] | ||
+ | |$\Gamma_{\mathbb{Z}}(x,s)=\displaystyle\sum_{k=0}^{\infty} \left( \displaystyle\prod_{j=s}^{k-1} \dfrac{j+x}{j+1} \right) \dfrac{1}{2^{k+1}}$ | ||
+ | |[[Derivation of gamma function for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Euler-Cauchy logarithm]] | ||
+ | |$L(t,s)=$ | ||
+ | |[[Derivation of Euler-Cauchy logarithm for T=Z|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Bohner logarithm]] |
− | |$ | + | |$L_p(t,s)=$ |
− | + | |[[Derivation of the Bohner logarithm for T=Z|derivation]] | |
− | |||
− | |||
|- | |- | ||
− | |$\ | + | |[[Jackson logarithm]] |
− | |$ | + | |$\log_{\mathbb{Z}} g(t)=$ |
− | + | |[[Derivation of the Jackson logarithm for T=Z|derivation]] | |
− | + | |- | |
− | \ | + | |[[Mozyrska-Torres logarithm]] |
− | [[File: | + | |$L_{\mathbb{Z}}(t)=$ |
+ | |[[Derivation of the Mozyrska-Torres logarithm for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Laplace transform]] | ||
+ | |$\mathscr{L}_{\mathbb{Z}}\{f\}(z;s)=$ | ||
+ | |[[Derivation of Laplace transform for T=Z|derivation]] | ||
+ | |- | ||
+ | |[[Hilger circle]] | ||
+ | |[[File:Hilgercircle,T=Z.png|250px]] | ||
+ | |[[Derivation of Hilger circle for T=Z|derivation]] | ||
|- | |- | ||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
+ | |||
+ | <center>{{:Time scales footer}}</center> |
Latest revision as of 01:14, 19 February 2016
The set $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$ of integers is a time scale.
Forward jump: | $\sigma(t)=t+1$ | derivation |
Forward graininess: | $\mu(t)=1$ | derivation |
Backward jump: | $\rho(t)=t-1$ | derivation |
Backward graininess: | $\nu(t)=1$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t)=f(t+1)-f(t)$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t)=f(t)-f(t-1)$ | derivation |
$\Delta$-integral | $\displaystyle\int_s^t f(\tau) \Delta \tau=\displaystyle\int_s^t f(\tau) \Delta \tau = \left\{ \begin{array}{ll} \displaystyle\sum_{k=s}^{t-1} f(k) &; t \gt s \\ 0 &; t=s \\ -\displaystyle\sum_{k=t}^{s-1} f(k) &; t \lt s \end{array} \right.$ | derivation |
$\nabla$-integral | $\displaystyle\int_s^t f(\tau) \nabla \tau=\displaystyle\int_s^t f(\tau) \nabla \tau = \left\{ \begin{array}{ll} \displaystyle\sum_{k=s+1}^t f(k) &; t>s \\ 0 &; t=s \\ -\displaystyle\sum_{k=t+1}^s f(k) &; t\lt s \end{array} \right.$ | derivation |
$h_k(t,s)$ | $h_k(t,s)=\dfrac{(t-s)^{\underline{k}}}{k!}$ | derivation |
$\hat{h}_k(t,s)$ | $\hat{h}_k(t,s)=\dfrac{(t-s)^{\overline{k}}}{k!}$ | derivation |
$g_k(t,s)$ | $g_k(t,s)=$ | derivation |
$\hat{g}_k(t,s)$ | $\hat{g}_k(t,s)=$ | derivation |
$e_p(t,s)$ | $e_p(t,s)=\left\{ \begin{array}{ll} \displaystyle\prod_{k=t}^{s-1} \dfrac{1}{1+p(k)} &; t < s \\ 1 &; t=s \\ \displaystyle\prod_{k=s}^{t-1} 1+p(k) &; t>s. \end{array} \right.$ | derivation |
$\hat{e}_p(t,s)$ | $\hat{e}_p(t,s)=$ | derivation |
Gaussian bell | $\mathbf{E}(t)=2^{\frac{-t(t-1)}{2}}$ | derivation |
$\mathrm{sin}_p(t,s)$ | $\sin_p(t,s) = \left\{ \begin{array}{ll} \dfrac{\displaystyle\prod_{k=s}^{t-1}1+ip(k) - \displaystyle\prod_{k=s}^{t-1}1-ip(k)}{2i} &; t>s \\ 0 &; t=s \\ \dfrac{\displaystyle\prod_{k=t}^{s-1} \frac{1}{1+ip(k)} - \displaystyle\prod_{k=t}^{s-1} \frac{1}{1-ip(k)}}{2i} &; t<s \end{array} \right.$ | derivation |
$\mathrm{\sin}_1(t,s)$ | $\sin_1(t,s)=$ | derivation |
$\widehat{\sin}_p(t,s)$ | $\widehat{\sin}_p(t,s)=$ | derivation |
$\mathrm{\cos}_p(t,s)$ | $\cos_p(t,s)=\begin{array}{ll} \cos_p(t,t_0) &= \dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2} \\ &= \dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) + \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2} \end{array}$ | derivation |
$\mathrm{\cos}_1(t,s)$ | $\cos_1(t,s)=\begin{array}{ll} \cos_1(t,0) &= \dfrac{(1+i)^{t}+(1-i)^{t}}{2} \\ &= \dfrac{\displaystyle\sum_{k=0}^{t} {t \choose k} i^k + \displaystyle\sum_{k=0}^{t} (-1)^k {t \choose k} i^k}{2} \end{array}$ | derivation |
$\widehat{\cos}_p(t,s)$ | $\widehat{\cos}_p(t,s)=$ | derivation |
$\sinh_p(t,s)$ | $\sinh_p(t,s)=$ | derivation |
$\widehat{\sinh}_p(t,s)$ | $\widehat{\sinh}_p(t,s)=$ | derivation |
$\cosh_p(t,s)$ | $\cosh_p(t,s)=$ | derivation |
$\widehat{\cosh}_p(t,s)$ | $\widehat{\cosh}_p(t,s)=$ | derivation |
Gamma function | $\Gamma_{\mathbb{Z}}(x,s)=\displaystyle\sum_{k=0}^{\infty} \left( \displaystyle\prod_{j=s}^{k-1} \dfrac{j+x}{j+1} \right) \dfrac{1}{2^{k+1}}$ | derivation |
Euler-Cauchy logarithm | $L(t,s)=$ | derivation |
Bohner logarithm | $L_p(t,s)=$ | derivation |
Jackson logarithm | $\log_{\mathbb{Z}} g(t)=$ | derivation |
Mozyrska-Torres logarithm | $L_{\mathbb{Z}}(t)=$ | derivation |
Laplace transform | $\mathscr{L}_{\mathbb{Z}}\{f\}(z;s)=$ | derivation |
Hilger circle | derivation |