Difference between revisions of "Main Page"

From timescalewiki
Jump to: navigation, search
(Time scales calculus)
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
This wiki is a resource for people who do research in <strong>time scale calculus</strong>. Time scale calculus is a unification and extension of differential and difference calculus in which one does calculus upon a set $\mathbb{T}$ of real numbers called a [[time scale]]. When [[Real_numbers | $\mathbb{T}=\mathbb{R}$]] the resulting theory becomes [http://en.wikipedia.org/wiki/Differential_calculus differential calculus], when [[Multiples_of_integers | $\mathbb{T}=\mathbb{Z}$]] the resulting theory becomes [http://en.wikipedia.org/wiki/Difference_calculus difference calculus], and when [[Quantum q greater than 1 | $\mathbb{T}=\{1,q,q^2,\ldots\}, q>1$]], the resulting theory becomes the [https://en.wikipedia.org/wiki/Quantum_calculus $q$-calculus]. Time scales also include any closed subset of $\mathbb{R}$, so more exotic sets such as the [http://en.wikipedia.org/wiki/Cantor_set Cantor set] are also subsumed in the theory.
+
This wiki is a resource for <strong>time scale calculus</strong>. Time scale calculus is a unification and extension of differential and difference calculus in which one does calculus upon a set $\mathbb{T}$ of real numbers called a [[time scale]]. When [[Real_numbers | $\mathbb{T}=\mathbb{R}$]] the resulting theory becomes [http://en.wikipedia.org/wiki/Differential_calculus differential calculus], when [[Multiples_of_integers | $\mathbb{T}=\mathbb{Z}$]] the resulting theory becomes [http://en.wikipedia.org/wiki/Difference_calculus difference calculus], and when [[Quantum q greater than 1 | $\mathbb{T}=\{1,q,q^2,\ldots\}, q>1$]], the resulting theory becomes the [https://en.wikipedia.org/wiki/Quantum_calculus $q$-calculus]. Time scales also include any closed subset of $\mathbb{R}$, so more exotic sets such as the [http://en.wikipedia.org/wiki/Cantor_set Cantor set] are also subsumed in the theory.
  
 
A result proven in time scale calculus implies the result for all choices of $\mathbb{T}$ so a result in time scale calculus immediately implies the result in differential calculus, the same result in difference calculus, the same result in $q$-calculus, the same result in calculus on the Cantor set, and countless others. For an example of this phenomenon, see the familiar properties of the [[delta_derivative | $\Delta$-derivative]] to classical differentiation or to taking a forward difference.
 
A result proven in time scale calculus implies the result for all choices of $\mathbb{T}$ so a result in time scale calculus immediately implies the result in differential calculus, the same result in difference calculus, the same result in $q$-calculus, the same result in calculus on the Cantor set, and countless others. For an example of this phenomenon, see the familiar properties of the [[delta_derivative | $\Delta$-derivative]] to classical differentiation or to taking a forward difference.
Line 17: Line 17:
 
[[Unilateral Laplace transform]]<br />
 
[[Unilateral Laplace transform]]<br />
 
[[Cauchy function]]<br />
 
[[Cauchy function]]<br />
[[Calculus of variations]]<br />
 
 
[[Chain rule]]<br />
 
[[Chain rule]]<br />
 
[[Unilateral convolution]]<br />
 
[[Unilateral convolution]]<br />
Line 27: Line 26:
 
[[Forward circle plus]]<br />
 
[[Forward circle plus]]<br />
 
[[Backward circle plus]]<br />
 
[[Backward circle plus]]<br />
[[complex_calculus | Complex calculus on time scales]]<br />
 
 
[[Convergence of time scales]]<br />
 
[[Convergence of time scales]]<br />
 
[[Dilation of time scales]]<br />
 
[[Dilation of time scales]]<br />
Line 45: Line 43:
 
[[Regulated function]]<br />
 
[[Regulated function]]<br />
 
[[Riccati equation]]<br />
 
[[Riccati equation]]<br />
[[Riesz representation theorem]]<br />
 
 
[[Scattered point]]<br />
 
[[Scattered point]]<br />
 
[[Self-adjoint]]<br />
 
[[Self-adjoint]]<br />
 
[[Shifting problem]]<br />
 
[[Shifting problem]]<br />
[[Substitution]]<br />
 
 
[[Variation of parameters]]<br />
 
[[Variation of parameters]]<br />
 
[[Wronskian]]<br />
 
[[Wronskian]]<br />
  
 
==$\Delta$-calculus==
 
==$\Delta$-calculus==
[[Completely delta differentiable]]<br />
 
 
[[delta_derivative | $\Delta$-derivative]]<br />
 
[[delta_derivative | $\Delta$-derivative]]<br />
 
[[Delta heat equation | $\Delta$ heat equation]]<br />
 
[[Delta heat equation | $\Delta$ heat equation]]<br />
Line 78: Line 73:
 
*[[Cumulant generating function]]
 
*[[Cumulant generating function]]
 
*[[Cumulative distribution function]]
 
*[[Cumulative distribution function]]
*[[Moments]]
 
 
*[[Probability density function]]
 
*[[Probability density function]]
 
*[[Joint time scales probability density function]]
 
*[[Joint time scales probability density function]]
Line 93: Line 87:
 
[[Delta shpq|$\mathrm{sh}_{pq}$]]<br />
 
[[Delta shpq|$\mathrm{sh}_{pq}$]]<br />
 
[[Gamma function]]<br />
 
[[Gamma function]]<br />
[[hyperbolic_functions | Hyperbolic functions]]<br />
 
 
[[Euler-Cauchy logarithm]]<br />
 
[[Euler-Cauchy logarithm]]<br />
 
[[Bohner logarithm]]<br />
 
[[Bohner logarithm]]<br />
Line 99: Line 92:
 
[[Mozyrska-Torres logarithm]]<br />
 
[[Mozyrska-Torres logarithm]]<br />
 
[[gaussian_bell | Gaussian bell]]<br />
 
[[gaussian_bell | Gaussian bell]]<br />
 +
[[Uniform distribution]]<br />
 +
[[Exponential distribution]]<br />
 +
[[Gamma distribution]]<br />
 +
  
 
==$\nabla$-calculus==
 
==$\nabla$-calculus==
Line 108: Line 105:
 
[[Nabla sine | $\nabla \widehat{\sin}_p$]]<br />
 
[[Nabla sine | $\nabla \widehat{\sin}_p$]]<br />
 
[[Nabla sinh | $\nabla \widehat{\sinh}_p$]]<br />
 
[[Nabla sinh | $\nabla \widehat{\sinh}_p$]]<br />
 
==$\Diamond_{\alpha}$-calculus==
 
[[Diamond alpha cosine | $\Diamond_{\alpha}$-$\cos_p$]]<br />
 
[[Diamond alpha cosh | $\Diamond_{\alpha}$-$\cosh_p$]]<br />
 
[[Diamond exponential | $\Diamond_{\alpha}$-$e_p$]]<br />
 
[[Diamond sine | $\Diamond$-$\sin_p$]]<br />
 
[[Diamond sinh | $\Diamond$-$\sinh_p$]]<br />
 
 
==Probability Distributions on time scales==
 
[[Uniform distribution]]<br />
 
[[Exponential distribution]]<br />
 
[[Gamma distribution]]<br />
 
 
=Special cases of time scales=
 
==Differential equations==
 
[[Hypergeometric differential equation]] <br />
 
[[Confluent hypergeometric differential equation]]<br />
 
 
==Difference equations==
 
[[Difference equation of hypergeometric type]]<br />
 
 
==$q$-difference equations==
 
[[q-difference equation of hypergeometric type]]<br />
 

Latest revision as of 01:55, 6 February 2023

This wiki is a resource for time scale calculus. Time scale calculus is a unification and extension of differential and difference calculus in which one does calculus upon a set $\mathbb{T}$ of real numbers called a time scale. When $\mathbb{T}=\mathbb{R}$ the resulting theory becomes differential calculus, when $\mathbb{T}=\mathbb{Z}$ the resulting theory becomes difference calculus, and when $\mathbb{T}=\{1,q,q^2,\ldots\}, q>1$, the resulting theory becomes the $q$-calculus. Time scales also include any closed subset of $\mathbb{R}$, so more exotic sets such as the Cantor set are also subsumed in the theory.

A result proven in time scale calculus implies the result for all choices of $\mathbb{T}$ so a result in time scale calculus immediately implies the result in differential calculus, the same result in difference calculus, the same result in $q$-calculus, the same result in calculus on the Cantor set, and countless others. For an example of this phenomenon, see the familiar properties of the $\Delta$-derivative to classical differentiation or to taking a forward difference.

See the Python library timescalecalculus on GitHub and its documentation.

Registration Due to a resurgence of automated spam bots, account registration and anonymous editing is currently disabled. Please contact Tom Cuchta (tomcuchta@gmail.com) to gain access to edit the wiki.

Time scales calculus

Examples of time scales

$\Huge\mathbb{R}$
Real numbers
$\Huge\mathbb{Z}$
Integers
$\Huge{h\mathbb{Z}}$
Multiples of integers
$\Huge\mathbb{Z}^2$
Square integers
$\Huge\mathbb{H}$
Harmonic numbers
$\Huge\mathbb{T}_{\mathrm{iso}}$
Isolated points
$\Huge\sqrt[n]{\mathbb{N}_0}$
nth root numbers
$\Huge\mathbb{P}_{a,b}$
Evenly spaced intervals
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q>1$
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q<1$
$\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$
Closure of unit fractions
$\Huge\mathcal{C}$
Cantor set

$\Delta$-special functions on time scales


$\cos_p$

$\cosh_p$

$e_p$

$g_k$

$h_k$

$\sin_p$

$\sinh_p$

Hilger complex plane and friends

$\Huge\mathbb{A}_h$
Hilger alternating axis
$\Huge\mathbb{I}_h$
Hilger circle
$\Huge\mathbb{C}_h$
Hilger complex plane
$\Huge\mathrm{Im}_h$
Hilger imaginary part
$\Huge\mathring{\iota}$
Hilger pure imaginary
$\Huge\mathbb{R}_h$
Hilger real axis
$\Huge\mathrm{Re}_h$
Hilger real part

$\Delta$-Inequalities

Bernoulli Bihari Cauchy-Schwarz Gronwall Hölder Jensen Lyapunov Markov Minkowski Opial Tschebycheff Wirtinger

Bilateral Laplace transform
Unilateral Laplace transform
Cauchy function
Chain rule
Unilateral convolution
Dense point
Disconjugate
Dynamic equation
Forward circle minus
Backward circle minus
Forward circle plus
Backward circle plus
Convergence of time scales
Dilation of time scales
Duality of $\Delta$ and $\nabla$
Fractional calculus
Frequency roots
Generalized square
Generalized zero
Induction on time scales
L'Hospital's Rule
First mean value theorem
Pre-differentiable
Marks-Gravagne-Davis Fourier transform
Cuchta-Georgiev Fourier transform
rd-continuous
Forward regressive function
Regulated function
Riccati equation
Scattered point
Self-adjoint
Shifting problem
Variation of parameters
Wronskian

$\Delta$-calculus

$\Delta$-derivative
$\Delta$ heat equation
$\Delta$-integral
$\Delta$-Taylor's formula
$\Delta$ wave equation
Directional $\Delta$ derivative
Partial $\Delta$ derivative
Partial $\Delta$ dynamic equations

$\nabla$-calculus

$\nabla$-derivative
$\nabla$-integral

$\Diamond_{\alpha}$-calculus

$\Diamond_{\alpha}$-derivative
$\Diamond_{\alpha}$-Hölder inequality
$\Diamond_{\alpha}$-Jensen's inequality
$\Diamond_{\alpha}$-Minkowski's inequality
$\Diamond$-integral

Probability Theory

Examples of time scales

  1. The real line: $\mathbb{R}$
  2. The integers: $\mathbb{Z} = \{\ldots, -1,0,1,\ldots\}$
  3. Multiples of integers: $h\mathbb{Z} = \{ht \colon t \in \mathbb{Z}\}$
  4. Quantum numbers ($q>1$): $\overline{q^{\mathbb{Z}}}$
  5. Quantum numbers ($q<1$): $\overline{q^{\mathbb{Z}}}$
  6. Square integers: $\mathbb{Z}^2 = \{t^2 \colon t \in \mathbb{Z} \}$
  7. Harmonic numbers: $\mathbb{H}=\left\{\displaystyle\sum_{k=1}^n \dfrac{1}{k} \colon n \in \mathbb{Z}^+ \right\}$
  8. The closure of the unit fractions: $\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$
  9. Isolated points: $\mathbb{T}=\{\ldots, t_{-1}, t_{0}, t_1, \ldots\}$

Special functions on time scales

$\mathrm{c}_{pq}$
$\mathrm{ch}_{pq}$
$\mathrm{s}_{pq}$
$\mathrm{sh}_{pq}$
Gamma function
Euler-Cauchy logarithm
Bohner logarithm
Jackson logarithm
Mozyrska-Torres logarithm
Gaussian bell
Uniform distribution
Exponential distribution
Gamma distribution


$\nabla$-calculus

$\nabla \widehat{\cos}_p$
$\nabla \widehat{\cosh}_p$
$\nabla \widehat{\exp}$
$\nabla \hat{h}_k$
$\nabla \hat{g}_k$
$\nabla \widehat{\sin}_p$
$\nabla \widehat{\sinh}_p$