Difference between revisions of "Real numbers"
From timescalewiki
(One intermediate revision by the same user not shown) | |||
Line 133: | Line 133: | ||
|- | |- | ||
|} | |} | ||
+ | |||
+ | =References= | ||
+ | *{{PaperReference|A generalized Fourier transform and convolution on time scales|2008|Robert J. Marks II|author2=Ian A. Gravagne|author3=John M. Davis|prev=|next=Multiples of integers}}: Section 2.1(a) | ||
+ | * {{PaperReference|Partial dynamic equations on time scales|2006|Billy Jackson||prev=Time scale|next=Quantum q greater than 1}}: Appendix | ||
<center>{{:Time scales footer}}</center> | <center>{{:Time scales footer}}</center> |
Latest revision as of 15:55, 15 January 2023
The set $\mathbb{R}$ of real numbers is a time scale. In this time scale, all derivatives reduce to the classical derivative and the integrals reduce to the classical integral.
Forward jump: | $\sigma(t)=t$ | derivation |
Forward graininess: | $\mu(t)=0$ | derivation |
Backward jump: | $\rho(t)=t$ | derivation |
Backward graininess: | $\nu(t)=0$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t)=\displaystyle\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}=f'(t)$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t) =\displaystyle\lim_{h \rightarrow 0} \dfrac{f(t)-f(t-h)}{h}= f'(t)$ | derivation |
$\Delta$-integral | $\displaystyle\int_s^t f(\tau) \Delta \tau = \int_s^t f(\tau) d\tau$ | derivation |
$\nabla$-derivative | $\displaystyle\int_s^t f(\tau) \nabla \tau = \int_s^t f(\tau) d\tau$ | derivation |
$h_k(t,s)$ | $h_k(t,s)=\dfrac{(t-s)^k}{k!}$ | derivation |
$\hat{h}_k(t,s)$ | $\hat{h}_k(t,s)=\dfrac{(t-s)^k}{k!}$ | derivation |
$g_k(t,s)$ | $g_k(t,s)=\dfrac{(t-s)^k}{k!}$ | derivation |
$\hat{g}_k(t,s)$ | $\hat{g}_k(t,s)=\dfrac{(t-s)^k}{k!}$ | derivation |
$e_p(t,s)$ | $e_p(t,s)=\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$ | derivation |
$\hat{e}_p(t,s)$ | $\hat{e}_p(t,s)=\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$ | derivation |
Gaussian bell | $\mathbf{E}(t)=e^{-\frac{t^2}{2}}$ | derivation |
$\mathrm{sin}_p(t,s)=$ | $\sin_p(t,s)=\sin\left( \displaystyle\int_s^t p(\tau) d\tau \right)$ | derivation |
$\mathrm{\sin}_1(t,s)$ | $\sin_1(t,s)=\sin(t-s)$ | derivation |
$\widehat{\sin}_p(t,s)$ | $\widehat{\sin}_p(t,s)=\sin\left( \displaystyle\int_s^t p(\tau) d\tau \right)$ | derivation |
$\mathrm{\cos}_p(t,s)$ | $\cos_p(t,s)=\cos \left( \displaystyle\int_s^t p(\tau) d\tau \right)$ | derivation |
$\mathrm{\cos}_1(t,s)$ | $\cos_1(t,s)=\cos(t-s)$ | derivation |
$\widehat{\cos}_p(t,s)$ | $\widehat{\cos}_p(t,s)=\cos \left( \displaystyle\int_s^t p(\tau) d\tau \right)$ | derivation |
$\sinh_p(t,s)$ | $\sinh_p(t,s)=$ | derivation |
$\widehat{\sinh}_p(t,s)$ | $\widehat{\sinh}_p(t,s)=$ | derivation |
$\cosh_p(t,s)$ | $\cosh_p(t,s)=$ | derivation |
$\widehat{\cosh}_p(t,s)$ | $\widehat{\cos}_p(t,s)=$ | derivation |
Gamma function | $\Gamma_{\mathbb{R}}(x,s)=\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$ | derivation |
Euler-Cauchy logarithm | $L(t,s)=$ | derivation |
Bohner logarithm | $L_p(t,s)=\log\left(\dfrac{p(t)}{p(s)}\right)$ | derivation |
Jackson logarithm | $\log_{\mathbb{T}} g(t)=$ | derivation |
Mozyrska-Torres logarithm | $L_{\mathbb{T}}(t)=$ | derivation |
Laplace transform | $\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_0^{\infty} f(\tau) e^{-z\tau} d\tau$ | derivation |
Hilger circle | derivation |
References
- Robert J. Marks II, Ian A. Gravagne and John M. Davis: A generalized Fourier transform and convolution on time scales (2008)... (next): Section 2.1(a)
- Billy Jackson: Partial dynamic equations on time scales (2006)... (previous)... (next): Appendix