Difference between revisions of "Isolated points"
From timescalewiki
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | We say that | + | Let $\mathbb{T}$ be a [[time_scale | time scale]]. We say that $\mathbb{T}$ is a time scale of isolated points if there exists $\epsilon > 0$ such that for all $t \in \mathbb{T}$, $\mu(t) \geq \epsilon$. Let $\mathbb{T}=\{\ldots,t_{-1},t_0,t_1,\ldots\}$ be a [[time_scale | time scale]] of isolated points with $t_k > t_n$ iff $k>n$. Define the [[bijection]] $\pi \colon \mathbb{T} \rightarrow \mathbb{Z}$, $\pi(t_k)=k$. |
− | + | {| class="wikitable" | |
+ | |+$\mathbb{T}=\mathbb{T}_{\mathrm{iso}}$ | ||
+ | |- | ||
+ | |Generic element $t \in \mathbb{T}$: | ||
+ | |for some $n \in \mathbb{Z}$, $t=t_n$ | ||
+ | |- | ||
+ | |[[Forward jump]]: | ||
+ | |$\sigma(t_n)=t_{n+1}$ | ||
+ | |[[Derivation of forward jump for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Forward graininess]]: | ||
+ | |$\mu(t_n)=t_{n+1}-t_n$ | ||
+ | |[[Derivation of forward graininess for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Backward jump]]: | ||
+ | |$\rho(t_n)=t_{n-1}$ | ||
+ | |[[Derivation of backward jump for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Backward graininess]]: | ||
+ | |$\nu(t_n)=t_{n}-t_{n-1}$ | ||
+ | |[[Derivation of backward graininess for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta derivative | $\Delta$-derivative]] | ||
+ | |$f^{\Delta}(t_n)=\dfrac{f(t_{n+1})-f(t_n)}{t_{n+1}-t_n}$ | ||
+ | |[[Derivation of delta derivative for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla derivative | $\nabla$-derivative]] | ||
+ | |$f^{\nabla}(t_n)=\dfrac{f(t_n)-f(t_{n-1})}{t_{n}-t_{n-1}}$ | ||
+ | |[[Derivation of nabla derivative for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta integral | $\Delta$-integral]] | ||
+ | |$\displaystyle\int_{s}^{t} f(\tau) \Delta \tau= \left\{ \begin{array}{ll} | ||
+ | -\displaystyle\sum_{k=\pi(t)}^{\pi(s)-1} \mu(t_k)f(t_k) &; t<s, \\ | ||
+ | 0 &; t=s, \\ | ||
+ | \displaystyle\sum_{k=\pi(s)}^{\pi(t)-1} \mu(t_k)f(t_k) &; t>s | ||
+ | \end{array}\right.$ | ||
− | {| | + | |[[Derivation of delta integral for T=isolated points|derivation]] |
− | | | + | |- |
+ | |[[Nabla integral | $\nabla$-integral]] | ||
+ | |$\displaystyle\int_s^t f(\tau) \nabla \tau=\left\{ \begin{array}{ll} | ||
+ | -\displaystyle\sum_{k=\pi(t)+1}^{\pi(s)} \nu(t_k)f(t_k) &; t<s, \\ | ||
+ | 0&; t=s, \\ | ||
+ | \displaystyle\sum_{k=\pi(s)+1}^{\pi(t)} \nu(t_k)f(t_k) &; t>s | ||
+ | \end{array} \right.$ | ||
+ | |[[Derivation of nabla integral for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta hk|$h_k(t,s)$]] | ||
+ | |$h_k(t,s)=$ | ||
+ | |[[Derivation of delta hk for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla hk|$\hat{h}_k(t,s)$]] | ||
+ | |$\hat{h}_k(t,s)=$ | ||
+ | |[[Derivation of nabla hk for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta gk|$g_k(t,s)$]] | ||
+ | |$g_k(t,s)=$ | ||
+ | |[[Derivation of delta gk for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla gk|$\hat{g}_k(t,s)$]] | ||
+ | |$\hat{g}_k(t,s)=$ | ||
+ | |[[Derivation of nabla gk for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta exponential | $e_p(t,s)$]] | ||
+ | |$e_p(t,s)=$ | ||
+ | |[[Derivation of delta exponential T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla exponential | $\hat{e}_p(t,s)$]] | ||
+ | |$\hat{e}_p(t,s)=$ | ||
+ | |[[Derivation of nabla exponential T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Gaussian bell]] | ||
+ | |$\mathbf{E}(t)=$ | ||
+ | |[[Derivation of Gaussian bell for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta sine | $\mathrm{sin}_p(t,s)=$]] | ||
+ | |$\sin_p(t,s)=$ | ||
+ | |[[Derivation of delta sin sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\sin}_1(t,s)$ | ||
+ | |$\sin_1(t,s)=$ | ||
+ | |[[Derivation of delta sin sub 1 for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sine|$\widehat{\sin}_p(t,s)$]] | ||
+ | |$\widehat{\sin}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sine sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosine|$\mathrm{\cos}_p(t,s)$]] | ||
+ | |$\cos_p(t,s)=$ | ||
+ | |[[Derivation of delta cos sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\cos}_1(t,s)$ | ||
+ | |$\cos_1(t,s)=$ | ||
+ | |[[Derivation of delta cos sub 1 for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosine|$\widehat{\cos}_p(t,s)$]] | ||
+ | |$\widehat{\cos}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cos sub 1 for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta sinh|$\sinh_p(t,s)$]] | ||
+ | |$\sinh_p(t,s)=$ | ||
+ | |[[Derivation of delta sinh sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sinh|$\widehat{\sinh}_p(t,s)$]] | ||
+ | |$\widehat{\sinh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sinh sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosh|$\cosh_p(t,s)$]] | ||
+ | |$\cosh_p(t,s)=$ | ||
+ | |[[Derivation of delta cosh sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosh|$\widehat{\cosh}_p(t,s)$]] | ||
+ | |$\widehat{\cosh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cosh sub p for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Gamma function]] | ||
+ | |$\Gamma_{\mathbb{T}_{\mathrm{iso}}}(x,s)=$ | ||
+ | |[[Derivation of gamma function for T=isolated points|derivation]] | ||
+ | |- | ||
+ | |[[Euler-Cauchy logarithm]] | ||
+ | |$L(t,s)=$ | ||
+ | |[[Derivation of Euler-Cauchy logarithm for T=isolated points|derivation]] | ||
|- | |- | ||
− | | | + | |[[Bohner logarithm]] |
− | | | + | |$L_p(t,s)=$ |
+ | |[[Derivation of the Bohner logarithm for T=isolated points|derivation]] | ||
|- | |- | ||
− | | | + | |[[Jackson logarithm]] |
− | |$\ | + | |$\log_{\mathbb{T}_{\mathrm{iso}}} g(t)=$ |
+ | |[[Derivation of the Jackson logarithm for T=isolated points|derivation]] | ||
|- | |- | ||
− | | | + | |[[Mozyrska-Torres logarithm]] |
− | |$\ | + | |$L_{\mathbb{T}_{\mathrm{iso}}}(t)=$ |
+ | |[[Derivation of the Mozyrska-Torres logarithm for T=isolated points|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Laplace transform]] |
− | |$ | + | |$\mathscr{L}_{\mathbb{T}_{\mathrm{iso}}}\{f\}(z;s)=$ |
+ | |[[Derivation of Laplace transform for T=isolated points|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Hilger circle]] |
− | | | + | | |
+ | |[[Derivation of Hilger circle for T=isolated points|derivation]] | ||
|- | |- | ||
− | |||
− | |||
|} | |} | ||
+ | |||
+ | == Examples of time scales of isolated points == | ||
+ | *[[Integers | $\mathbb{Z}$]] | ||
+ | *[[Multiples_of_integers | $h\mathbb{Z}$]] | ||
+ | *[[Square_integers | $\mathbb{Z}^2$]] | ||
+ | *[[Harmonic_numbers | $\mathbb{H}$]] | ||
+ | |||
+ | <center>{{:Time scales footer}}</center> |
Latest revision as of 23:20, 9 June 2015
Let $\mathbb{T}$ be a time scale. We say that $\mathbb{T}$ is a time scale of isolated points if there exists $\epsilon > 0$ such that for all $t \in \mathbb{T}$, $\mu(t) \geq \epsilon$. Let $\mathbb{T}=\{\ldots,t_{-1},t_0,t_1,\ldots\}$ be a time scale of isolated points with $t_k > t_n$ iff $k>n$. Define the bijection $\pi \colon \mathbb{T} \rightarrow \mathbb{Z}$, $\pi(t_k)=k$.
Generic element $t \in \mathbb{T}$: | for some $n \in \mathbb{Z}$, $t=t_n$ | |
Forward jump: | $\sigma(t_n)=t_{n+1}$ | derivation |
Forward graininess: | $\mu(t_n)=t_{n+1}-t_n$ | derivation |
Backward jump: | $\rho(t_n)=t_{n-1}$ | derivation |
Backward graininess: | $\nu(t_n)=t_{n}-t_{n-1}$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t_n)=\dfrac{f(t_{n+1})-f(t_n)}{t_{n+1}-t_n}$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t_n)=\dfrac{f(t_n)-f(t_{n-1})}{t_{n}-t_{n-1}}$ | derivation |
$\Delta$-integral | $\displaystyle\int_{s}^{t} f(\tau) \Delta \tau= \left\{ \begin{array}{ll} -\displaystyle\sum_{k=\pi(t)}^{\pi(s)-1} \mu(t_k)f(t_k) &; t<s, \\ 0 &; t=s, \\ \displaystyle\sum_{k=\pi(s)}^{\pi(t)-1} \mu(t_k)f(t_k) &; t>s \end{array}\right.$ | derivation |
$\nabla$-integral | $\displaystyle\int_s^t f(\tau) \nabla \tau=\left\{ \begin{array}{ll} -\displaystyle\sum_{k=\pi(t)+1}^{\pi(s)} \nu(t_k)f(t_k) &; t<s, \\ 0&; t=s, \\ \displaystyle\sum_{k=\pi(s)+1}^{\pi(t)} \nu(t_k)f(t_k) &; t>s \end{array} \right.$ | derivation |
$h_k(t,s)$ | $h_k(t,s)=$ | derivation |
$\hat{h}_k(t,s)$ | $\hat{h}_k(t,s)=$ | derivation |
$g_k(t,s)$ | $g_k(t,s)=$ | derivation |
$\hat{g}_k(t,s)$ | $\hat{g}_k(t,s)=$ | derivation |
$e_p(t,s)$ | $e_p(t,s)=$ | derivation |
$\hat{e}_p(t,s)$ | $\hat{e}_p(t,s)=$ | derivation |
Gaussian bell | $\mathbf{E}(t)=$ | derivation |
$\mathrm{sin}_p(t,s)=$ | $\sin_p(t,s)=$ | derivation |
$\mathrm{\sin}_1(t,s)$ | $\sin_1(t,s)=$ | derivation |
$\widehat{\sin}_p(t,s)$ | $\widehat{\sin}_p(t,s)=$ | derivation |
$\mathrm{\cos}_p(t,s)$ | $\cos_p(t,s)=$ | derivation |
$\mathrm{\cos}_1(t,s)$ | $\cos_1(t,s)=$ | derivation |
$\widehat{\cos}_p(t,s)$ | $\widehat{\cos}_p(t,s)=$ | derivation |
$\sinh_p(t,s)$ | $\sinh_p(t,s)=$ | derivation |
$\widehat{\sinh}_p(t,s)$ | $\widehat{\sinh}_p(t,s)=$ | derivation |
$\cosh_p(t,s)$ | $\cosh_p(t,s)=$ | derivation |
$\widehat{\cosh}_p(t,s)$ | $\widehat{\cosh}_p(t,s)=$ | derivation |
Gamma function | $\Gamma_{\mathbb{T}_{\mathrm{iso}}}(x,s)=$ | derivation |
Euler-Cauchy logarithm | $L(t,s)=$ | derivation |
Bohner logarithm | $L_p(t,s)=$ | derivation |
Jackson logarithm | $\log_{\mathbb{T}_{\mathrm{iso}}} g(t)=$ | derivation |
Mozyrska-Torres logarithm | $L_{\mathbb{T}_{\mathrm{iso}}}(t)=$ | derivation |
Laplace transform | $\mathscr{L}_{\mathbb{T}_{\mathrm{iso}}}\{f\}(z;s)=$ | derivation |
Hilger circle | derivation |