Difference between revisions of "Harmonic numbers"
From timescalewiki
(One intermediate revision by the same user not shown) | |||
Line 8: | Line 8: | ||
|- | |- | ||
|Generic element | |Generic element | ||
− | |If $t \in \mathbb{H}$, then for some positive integer $n$, $t=\displaystyle\sum_{k=0}^n \dfrac{1}{k}$. | + | |If $t \in \mathbb{H}$, then for some positive integer $n$, $t=H_n=\displaystyle\sum_{k=0}^n \dfrac{1}{k}$. |
|- | |- | ||
|[[Forward jump]]: | |[[Forward jump]]: | ||
Line 15: | Line 15: | ||
|- | |- | ||
|[[Forward graininess]]: | |[[Forward graininess]]: | ||
− | |$\mu(t)=$ | + | |$\mu(t)=\mu \left( \displaystyle\sum_{k=1}^{n} \dfrac{1}{k} \right)= \dfrac{1}{n+1}$ |
|[[Derivation of forward graininess for T=Harmonic numbers|derivation]] | |[[Derivation of forward graininess for T=Harmonic numbers|derivation]] | ||
|- | |- | ||
Line 67: | Line 67: | ||
|- | |- | ||
|[[Gaussian bell]] | |[[Gaussian bell]] | ||
− | |$\mathbf{E}( | + | |$\mathbf{E}\left( H_n \dfrac{1}{k} \right)=\displaystyle\prod_{k=1}^n \left( \dfrac{k}{k+1} \right)^{H_{k-1}}$ |
|[[Derivation of Gaussian bell for T=Harmonic numbers|derivation]] | |[[Derivation of Gaussian bell for T=Harmonic numbers|derivation]] | ||
|- | |- |
Latest revision as of 00:38, 9 September 2015
The set $$\mathbb{H}=\left\{\displaystyle\sum_{k=1}^n \dfrac{1}{k} \colon n \in \mathbb{Z}^+ \right\} = \left\{1,\frac{3}{2},\frac{11}{6},\frac{25}{12},\frac{137}{60},\frac{49}{20},\frac{ 363}{140},\frac{761}{280},\ldots \right\}$$ of harmonic numbers is a time scale.
Generic element | If $t \in \mathbb{H}$, then for some positive integer $n$, $t=H_n=\displaystyle\sum_{k=0}^n \dfrac{1}{k}$. | |
Forward jump: | $\sigma(t)=\sigma \left( \displaystyle\sum_{k=1}^{n} \dfrac{1}{k} \right)= t + \dfrac{1}{n+1}$ | derivation |
Forward graininess: | $\mu(t)=\mu \left( \displaystyle\sum_{k=1}^{n} \dfrac{1}{k} \right)= \dfrac{1}{n+1}$ | derivation |
Backward jump: | $\rho(t)=$ | derivation |
Backward graininess: | $\nu(t)=$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t)=$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t)=$ | derivation |
$\Delta$-integral | $\displaystyle\int_s^t f(\tau) \Delta \tau=$ | derivation |
$\nabla$-integral | $\displaystyle\int_s^t f(\tau) \nabla \tau=$ | derivation |
$h_k(t,s)$ | $h_k(t,s)=$ | derivation |
$\hat{h}_k(t,s)$ | $\hat{h}_k(t,s)=$ | derivation |
$g_k(t,s)$ | $g_k(t,s)=$ | derivation |
$\hat{g}_k(t,s)$ | $\hat{g}_k(t,s)=$ | derivation |
$e_p(t,s)$ | $e_p(t,s)=$ | derivation |
$\hat{e}_p(t,s)$ | $\hat{e}_p(t,s)=$ | derivation |
Gaussian bell | $\mathbf{E}\left( H_n \dfrac{1}{k} \right)=\displaystyle\prod_{k=1}^n \left( \dfrac{k}{k+1} \right)^{H_{k-1}}$ | derivation |
$\mathrm{sin}_p(t,s)=$ | $\sin_p(t,s)=$ | derivation |
$\mathrm{\sin}_1(t,s)$ | $\sin_1(t,s)=$ | derivation |
$\widehat{\sin}_p(t,s)$ | $\widehat{\sin}_p(t,s)=$ | derivation |
$\mathrm{\cos}_p(t,s)$ | $\cos_p(t,s)=$ | derivation |
$\mathrm{\cos}_1(t,s)$ | $\cos_1(t,s)=$ | derivation |
$\widehat{\cos}_p(t,s)$ | $\widehat{\cos}_p(t,s)=$ | derivation |
$\sinh_p(t,s)$ | $\sinh_p(t,s)=$ | derivation |
$\widehat{\sinh}_p(t,s)$ | $\widehat{\sinh}_p(t,s)=$ | derivation |
$\cosh_p(t,s)$ | $\cosh_p(t,s)=$ | derivation |
$\widehat{\cosh}_p(t,s)$ | $\widehat{\cosh}_p(t,s)=$ | derivation |
Gamma function | $\Gamma_{\mathbb{H}}(x,s)=$ | derivation |
Euler-Cauchy logarithm | $L(t,s)=$ | derivation |
Bohner logarithm | $L_p(t,s)=$ | derivation |
Jackson logarithm | $\log_{\mathbb{H}} g(t)=$ | derivation |
Mozyrska-Torres logarithm | $L_{\mathbb{H}}(t)=$ | derivation |
Laplace transform | $\mathscr{L}_{\mathbb{H}}\{f\}(z;s)=$ | derivation |
Hilger circle | derivation |