Difference between revisions of "Harmonic numbers"
From timescalewiki
(Created page with "The set $\mathbb{H}=\left\{\displaystyle\sum_{k=1}^n \dfrac{1}{k} \colon n \in \mathbb{Z}^+ \right\}$ of harmonic numbers is a time scale. {| class="wikitable" |+$\mathbb...") |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | The set $\mathbb{H}=\left\{\displaystyle\sum_{k=1}^n \dfrac{1}{k} \colon n \in \mathbb{Z}^+ \right\}$ of harmonic numbers is a [[time scale]]. | + | The set |
+ | $$\mathbb{H}=\left\{\displaystyle\sum_{k=1}^n \dfrac{1}{k} \colon n \in \mathbb{Z}^+ \right\} = \left\{1,\frac{3}{2},\frac{11}{6},\frac{25}{12},\frac{137}{60},\frac{49}{20},\frac{ | ||
+ | 363}{140},\frac{761}{280},\ldots \right\}$$ | ||
+ | of harmonic numbers is a [[time scale]]. | ||
{| class="wikitable" | {| class="wikitable" | ||
|+$\mathbb{T}=\mathbb{H}$ | |+$\mathbb{T}=\mathbb{H}$ | ||
|- | |- | ||
− | |Generic element $t\in \mathbb{ | + | |Generic element |
− | + | |If $t \in \mathbb{H}$, then for some positive integer $n$, $t=H_n=\displaystyle\sum_{k=0}^n \dfrac{1}{k}$. | |
|- | |- | ||
− | | | + | |[[Forward jump]]: |
− | |$ | + | |$\sigma(t)=\sigma \left( \displaystyle\sum_{k=1}^{n} \dfrac{1}{k} \right)= t + \dfrac{1}{n+1}$ |
− | \sigma(t) | + | |[[Derivation of forward jump for T=Harmonic numbers|derivation]] |
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |[[Forward graininess]]: |
− | |$ | + | |$\mu(t)=\mu \left( \displaystyle\sum_{k=1}^{n} \dfrac{1}{k} \right)= \dfrac{1}{n+1}$ |
− | \mu(t) | + | |[[Derivation of forward graininess for T=Harmonic numbers|derivation]] |
− | |||
− | |||
− | |||
|- | |- | ||
− | |[[ | + | |[[Backward jump]]: |
− | |$\ | + | |$\rho(t)=$ |
− | + | |[[Derivation of backward jump for T=Harmonic numbers|derivation]] | |
− | |||
− | |||
− | |||
|- | |- | ||
− | |[[ | + | |[[Backward graininess]]: |
− | | $\ | + | |$\nu(t)=$ |
− | \displaystyle\int_s^t f(\tau) \Delta \tau | + | |[[Derivation of backward graininess for T=Harmonic numbers|derivation]] |
− | + | |- | |
− | \ | + | |[[Delta derivative | $\Delta$-derivative]] |
+ | |$f^{\Delta}(t)=$ | ||
+ | |[[Derivation of delta derivative for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Nabla derivative | $\nabla$-derivative]] | ||
+ | |$f^{\nabla}(t)=$ | ||
+ | |[[Derivation of nabla derivative for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Delta integral | $\Delta$-integral]] | ||
+ | |$\displaystyle\int_s^t f(\tau) \Delta \tau=$ | ||
+ | |[[Derivation of delta integral for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Nabla integral | $\nabla$-integral]] | ||
+ | |$\displaystyle\int_s^t f(\tau) \nabla \tau=$ | ||
+ | |[[Derivation of nabla integral for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Delta hk|$h_k(t,s)$]] | ||
+ | |$h_k(t,s)=$ | ||
+ | |[[Derivation of delta hk for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Nabla hk|$\hat{h}_k(t,s)$]] | ||
+ | |$\hat{h}_k(t,s)=$ | ||
+ | |[[Derivation of nabla hk for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Delta gk|$g_k(t,s)$]] | ||
+ | |$g_k(t,s)=$ | ||
+ | |[[Derivation of delta gk for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Nabla gk|$\hat{g}_k(t,s)$]] | ||
+ | |$\hat{g}_k(t,s)=$ | ||
+ | |[[Derivation of nabla gk for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Delta exponential | $e_p(t,s)$]] | ||
+ | |$e_p(t,s)=$ | ||
+ | |[[Derivation of delta exponential T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Nabla exponential | $\hat{e}_p(t,s)$]] | ||
+ | |$\hat{e}_p(t,s)=$ | ||
+ | |[[Derivation of nabla exponential T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Gaussian bell]] | ||
+ | |$\mathbf{E}\left( H_n \dfrac{1}{k} \right)=\displaystyle\prod_{k=1}^n \left( \dfrac{k}{k+1} \right)^{H_{k-1}}$ | ||
+ | |[[Derivation of Gaussian bell for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Delta sine | $\mathrm{sin}_p(t,s)=$]] | ||
+ | |$\sin_p(t,s)=$ | ||
+ | |[[Derivation of delta sin sub p for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\sin}_1(t,s)$ | ||
+ | |$\sin_1(t,s)=$ | ||
+ | |[[Derivation of delta sin sub 1 for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sine|$\widehat{\sin}_p(t,s)$]] | ||
+ | |$\widehat{\sin}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sine sub p for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosine|$\mathrm{\cos}_p(t,s)$]] | ||
+ | |$\cos_p(t,s)=$ | ||
+ | |[[Derivation of delta cos sub p for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\cos}_1(t,s)$ | ||
+ | |$\cos_1(t,s)=$ | ||
+ | |[[Derivation of delta cos sub 1 for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosine|$\widehat{\cos}_p(t,s)$]] | ||
+ | |$\widehat{\cos}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cos sub 1 for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Delta sinh|$\sinh_p(t,s)$]] | ||
+ | |$\sinh_p(t,s)=$ | ||
+ | |[[Derivation of delta sinh sub p for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sinh|$\widehat{\sinh}_p(t,s)$]] | ||
+ | |$\widehat{\sinh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sinh sub p for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosh|$\cosh_p(t,s)$]] | ||
+ | |$\cosh_p(t,s)=$ | ||
+ | |[[Derivation of delta cosh sub p for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosh|$\widehat{\cosh}_p(t,s)$]] | ||
+ | |$\widehat{\cosh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cosh sub p for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Gamma function]] | ||
+ | |$\Gamma_{\mathbb{H}}(x,s)=$ | ||
+ | |[[Derivation of gamma function for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Euler-Cauchy logarithm]] | ||
+ | |$L(t,s)=$ | ||
+ | |[[Derivation of Euler-Cauchy logarithm for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Bohner logarithm]] | ||
+ | |$L_p(t,s)=$ | ||
+ | |[[Derivation of the Bohner logarithm for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Jackson logarithm]] | ||
+ | |$\log_{\mathbb{H}} g(t)=$ | ||
+ | |[[Derivation of the Jackson logarithm for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Mozyrska-Torres logarithm]] | ||
+ | |$L_{\mathbb{H}}(t)=$ | ||
+ | |[[Derivation of the Mozyrska-Torres logarithm for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Laplace transform]] | ||
+ | |$\mathscr{L}_{\mathbb{H}}\{f\}(z;s)=$ | ||
+ | |[[Derivation of Laplace transform for T=Harmonic numbers|derivation]] | ||
+ | |- | ||
+ | |[[Hilger circle]] | ||
+ | | | ||
+ | |[[Derivation of Hilger circle for T=Harmonic numbers|derivation]] | ||
|- | |- | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
+ | |||
+ | <center>{{:Time scales footer}}</center> |
Latest revision as of 00:38, 9 September 2015
The set $$\mathbb{H}=\left\{\displaystyle\sum_{k=1}^n \dfrac{1}{k} \colon n \in \mathbb{Z}^+ \right\} = \left\{1,\frac{3}{2},\frac{11}{6},\frac{25}{12},\frac{137}{60},\frac{49}{20},\frac{ 363}{140},\frac{761}{280},\ldots \right\}$$ of harmonic numbers is a time scale.
Generic element | If $t \in \mathbb{H}$, then for some positive integer $n$, $t=H_n=\displaystyle\sum_{k=0}^n \dfrac{1}{k}$. | |
Forward jump: | $\sigma(t)=\sigma \left( \displaystyle\sum_{k=1}^{n} \dfrac{1}{k} \right)= t + \dfrac{1}{n+1}$ | derivation |
Forward graininess: | $\mu(t)=\mu \left( \displaystyle\sum_{k=1}^{n} \dfrac{1}{k} \right)= \dfrac{1}{n+1}$ | derivation |
Backward jump: | $\rho(t)=$ | derivation |
Backward graininess: | $\nu(t)=$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t)=$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t)=$ | derivation |
$\Delta$-integral | $\displaystyle\int_s^t f(\tau) \Delta \tau=$ | derivation |
$\nabla$-integral | $\displaystyle\int_s^t f(\tau) \nabla \tau=$ | derivation |
$h_k(t,s)$ | $h_k(t,s)=$ | derivation |
$\hat{h}_k(t,s)$ | $\hat{h}_k(t,s)=$ | derivation |
$g_k(t,s)$ | $g_k(t,s)=$ | derivation |
$\hat{g}_k(t,s)$ | $\hat{g}_k(t,s)=$ | derivation |
$e_p(t,s)$ | $e_p(t,s)=$ | derivation |
$\hat{e}_p(t,s)$ | $\hat{e}_p(t,s)=$ | derivation |
Gaussian bell | $\mathbf{E}\left( H_n \dfrac{1}{k} \right)=\displaystyle\prod_{k=1}^n \left( \dfrac{k}{k+1} \right)^{H_{k-1}}$ | derivation |
$\mathrm{sin}_p(t,s)=$ | $\sin_p(t,s)=$ | derivation |
$\mathrm{\sin}_1(t,s)$ | $\sin_1(t,s)=$ | derivation |
$\widehat{\sin}_p(t,s)$ | $\widehat{\sin}_p(t,s)=$ | derivation |
$\mathrm{\cos}_p(t,s)$ | $\cos_p(t,s)=$ | derivation |
$\mathrm{\cos}_1(t,s)$ | $\cos_1(t,s)=$ | derivation |
$\widehat{\cos}_p(t,s)$ | $\widehat{\cos}_p(t,s)=$ | derivation |
$\sinh_p(t,s)$ | $\sinh_p(t,s)=$ | derivation |
$\widehat{\sinh}_p(t,s)$ | $\widehat{\sinh}_p(t,s)=$ | derivation |
$\cosh_p(t,s)$ | $\cosh_p(t,s)=$ | derivation |
$\widehat{\cosh}_p(t,s)$ | $\widehat{\cosh}_p(t,s)=$ | derivation |
Gamma function | $\Gamma_{\mathbb{H}}(x,s)=$ | derivation |
Euler-Cauchy logarithm | $L(t,s)=$ | derivation |
Bohner logarithm | $L_p(t,s)=$ | derivation |
Jackson logarithm | $\log_{\mathbb{H}} g(t)=$ | derivation |
Mozyrska-Torres logarithm | $L_{\mathbb{H}}(t)=$ | derivation |
Laplace transform | $\mathscr{L}_{\mathbb{H}}\{f\}(z;s)=$ | derivation |
Hilger circle | derivation |