Difference between revisions of "Square integers"
From timescalewiki
(Created page with "The set $\mathbb{Z}^2 = \{0,1,4,9,16,\ldots\}$ of square integers is a time scale. {| class="wikitable" |+$\mathbb{T}=\mathbb{Z}^2$ |- |Generic element $t\in \mathbb{T}$:...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 4: | Line 4: | ||
|+$\mathbb{T}=\mathbb{Z}^2$ | |+$\mathbb{T}=\mathbb{Z}^2$ | ||
|- | |- | ||
− | | | + | |[[Forward jump]]: |
− | | | + | |$\sigma(t)=t+2\sqrt{t}+1$ |
+ | |[[Derivation of forward jump for T=ZSquared|derivation]] | ||
|- | |- | ||
− | | | + | |[[Forward graininess]]: |
− | |$\ | + | |$\mu(t)=2\sqrt{t}+1$ |
− | + | |[[Derivation of forward graininess for T=ZSquared|derivation]] | |
− | |||
− | |||
|- | |- | ||
− | | | + | |[[Backward jump]]: |
− | |$\ | + | |$\rho(t)=$ |
− | + | |[[Derivation of backward jump for T=ZSquared|derivation]] | |
− | |||
− | |||
|- | |- | ||
− | |[[ | + | |[[Backward graininess]]: |
+ | |$\nu(t)=$ | ||
+ | |[[Derivation of backward graininess for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Delta derivative | $\Delta$-derivative]] | ||
|$f^{\Delta}(t)=\dfrac{f(t+2\sqrt{t}+1)-f(t)}{2\sqrt{t}-1}$ | |$f^{\Delta}(t)=\dfrac{f(t+2\sqrt{t}+1)-f(t)}{2\sqrt{t}-1}$ | ||
+ | |[[Derivation of delta derivative for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Nabla derivative | $\nabla$-derivative]] | ||
+ | |$f^{\nabla}(t)=$ | ||
+ | |[[Derivation of nabla derivative for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Delta integral | $\Delta$-integral]] | ||
+ | |$\displaystyle\int_s^t f(\tau) \Delta \tau=$ | ||
+ | |[[Derivation of delta integral for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Nabla integral | $\nabla$-integral]] | ||
+ | |$\displaystyle\int_s^t f(\tau) \nabla \tau=$ | ||
+ | |[[Derivation of nabla integral for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Delta hk|$h_k(t,s)$]] | ||
+ | |$h_k(t,s)=$ | ||
+ | |[[Derivation of delta hk for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Nabla hk|$\hat{h}_k(t,s)$]] | ||
+ | |$\hat{h}_k(t,s)=$ | ||
+ | |[[Derivation of nabla hk for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Delta gk|$g_k(t,s)$]] | ||
+ | |$g_k(t,s)=$ | ||
+ | |[[Derivation of delta gk for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Nabla gk|$\hat{g}_k(t,s)$]] | ||
+ | |$\hat{g}_k(t,s)=$ | ||
+ | |[[Derivation of nabla gk for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Delta exponential | $e_p(t,s)$]] | ||
+ | |$e_p(t,s)=$ | ||
+ | |[[Derivation of delta exponential T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Nabla exponential | $\hat{e}_p(t,s)$]] | ||
+ | |$\hat{e}_p(t,s)=$ | ||
+ | |[[Derivation of nabla exponential T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Gaussian bell]] | ||
+ | |$\mathbf{E}(t)=$ | ||
+ | |[[Derivation of Gaussian bell for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Delta sine | $\mathrm{sin}_p(t,s)=$]] | ||
+ | |$\sin_p(t,s)=$ | ||
+ | |[[Derivation of delta sin sub p for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\sin}_1(t,s)$ | ||
+ | |$\sin_1(t,s)=$ | ||
+ | |[[Derivation of delta sin sub 1 for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sine|$\widehat{\sin}_p(t,s)$]] | ||
+ | |$\widehat{\sin}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sine sub p for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosine|$\mathrm{\cos}_p(t,s)$]] | ||
+ | |$\cos_p(t,s)=$ | ||
+ | |[[Derivation of delta cos sub p for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\cos}_1(t,s)$ | ||
+ | |$\cos_1(t,s)=$ | ||
+ | |[[Derivation of delta cos sub 1 for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosine|$\widehat{\cos}_p(t,s)$]] | ||
+ | |$\widehat{\cos}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cos sub 1 for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Delta sinh|$\sinh_p(t,s)$]] | ||
+ | |$\sinh_p(t,s)=$ | ||
+ | |[[Derivation of delta sinh sub p for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sinh|$\widehat{\sinh}_p(t,s)$]] | ||
+ | |$\widehat{\sinh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sinh sub p for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosh|$\cosh_p(t,s)$]] | ||
+ | |$\cosh_p(t,s)=$ | ||
+ | |[[Derivation of delta cosh sub p for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosh|$\widehat{\cosh}_p(t,s)$]] | ||
+ | |$\widehat{\cosh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cosh sub p for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Gamma function]] | ||
+ | |$\Gamma_{\mathbb{Z}^2}(x,s)=$ | ||
+ | |[[Derivation of gamma function for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Euler-Cauchy logarithm]] | ||
+ | |$L(t,s)=$ | ||
+ | |[[Derivation of Euler-Cauchy logarithm for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Bohner logarithm]] | ||
+ | |$L_p(t,s)=$ | ||
+ | |[[Derivation of the Bohner logarithm for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Jackson logarithm]] | ||
+ | |$\log_{\mathbb{Z}^2} g(t)=$ | ||
+ | |[[Derivation of the Jackson logarithm for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Mozyrska-Torres logarithm]] | ||
+ | |$L_{\mathbb{Z}^2}(t)=$ | ||
+ | |[[Derivation of the Mozyrska-Torres logarithm for T=ZSquared|derivation]] | ||
+ | |- | ||
+ | |[[Laplace transform]] | ||
+ | |$\mathscr{L}_{\mathbb{Z}^2}\{f\}(z;s)=$ | ||
+ | |[[Derivation of Laplace transform for T=ZSquared|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Hilger circle]] |
− | | | + | | |
+ | |[[Derivation of Hilger circle for T=ZSquared|derivation]] | ||
|- | |- | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
+ | |||
+ | <center>{{:Time scales footer}}</center> |
Latest revision as of 01:27, 22 May 2015
The set $\mathbb{Z}^2 = \{0,1,4,9,16,\ldots\}$ of square integers is a time scale.