Difference between revisions of "Quantum q greater than 1"

From timescalewiki
Jump to: navigation, search
 
(One intermediate revision by the same user not shown)
Line 140: Line 140:
 
|}
 
|}
  
{| class="wikitable"
+
=References=
|+$\mathbb{T}=\overline{q^{\mathbb{Z}}}, q>1$
+
* {{PaperReference|Partial dynamic equations on time scales|2006|Billy Jackson||prev=Real numbers|next=Multiples of integers}}: Appendix
|-
 
|Generic element $t\in \mathbb{T}$:
 
|For some $n \in \mathbb{Z}, t =q^n$
 
|-
 
|Jump operator:
 
|$\sigma(t)=qt$
 
|-
 
|Graininess operator:
 
|$\begin{array}{ll}
 
\mu(t)&=qt-t\\
 
&=t(q-1)
 
\end{array}$
 
|-
 
|[[Delta_derivative | $\Delta$-derivative:]]
 
| $f^{\Delta}(t)= \left\{ \begin{array}{ll}
 
\dfrac{f(qt)-f(t)}{t(q-1)} &; t\neq 0 \\
 
\displaystyle\lim_{h \rightarrow 0} \dfrac{f(h)-f(0)}{h} &; t=0
 
\end{array} \right.$
 
|-
 
|[[Delta_integral | $\Delta$-integral:]]
 
| $\begin{array}{ll}
 
\displaystyle\int_s^t f(\tau) \Delta \tau &= \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} q^{k} (q-1) f(q^k) \\
 
\end{array}$
 
|-
 
|[[Delta hk|$h_k(t,s)$]]
 
|$\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^ns}{\sum_{i=0}^n q^i}$
 
|-
 
|[[Exponential_functions | Exponential function]]:
 
| $\begin{array}{ll}
 
e_p(t,s) &= \exp \left( \displaystyle\int_{s}^{t} \dfrac{1}{\mu(\tau)} \log( 1 + p(\tau) \mu(\tau) ) \Delta \tau \right) \\
 
&= \exp \left( \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} \mu(q^k) \dfrac{1}{\mu(q^k)} \log(1 + p(q^k)\mu(q^k)) \right) \\
 
&= \exp \left( \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} \log(1 + p(q^k)\mu(q^k)) \right) \\
 
&= \displaystyle\prod_{k=\log_q(s)}^{\log_q(t)-1} 1 + p(q^k)q^{k}(q-1)
 
\end{array}$
 
|}
 
  
 
<center>{{:Time scales footer}}</center>
 
<center>{{:Time scales footer}}</center>

Latest revision as of 14:49, 15 January 2023

Let $q>1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{-2}, q^{-1}, 1, q, q^2, \ldots \}$ of quantum numbers is a time scale.


$\mathbb{T}=\overline{q^{\mathbb{Z}}}$
Forward jump: $\sigma(t)=qt$ derivation
Forward graininess: $\mu(t)=t(q-1)$ derivation
Backward jump: $\rho(t)=$ derivation
Backward graininess: $\nu(t)=$ derivation
$\Delta$-derivative $f^{\Delta}(t)= \left\{ \begin{array}{ll} \dfrac{f(qt)-f(t)}{t(q-1)} &; t\neq 0 \\ \displaystyle\lim_{h \rightarrow 0} \dfrac{f(h)-f(0)}{h} &; t=0 \end{array} \right.$ derivation
$\nabla$-derivative $f^{\nabla}(t)=$ derivation
$\Delta$-integral $\begin{array}{ll} \displaystyle\int_s^t f(\tau) \Delta \tau &= \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} q^{k} (q-1) f(q^k) \\ \end{array}$ derivation
$\nabla$-integral $\displaystyle\int_s^t f(\tau) \nabla \tau=$ derivation
$h_k(t,s)$ $h_k(t,s)=\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^ns}{\sum_{i=0}^n q^i}$ derivation
$\hat{h}_k(t,s)$ $\hat{h}_k(t,s)=$ derivation
$g_k(t,s)$ $g_k(t,s)=$ derivation
$\hat{g}_k(t,s)$ $\hat{g}_k(t,s)=$ derivation
$e_p(t,s)$ $e_p(t,s)=\displaystyle\prod_{k=\log_q(s)}^{\log_q(t)-1} 1 + p(q^k)q^{k}(q-1)$ derivation
$\hat{e}_p(t,s)$ $\hat{e}_p(t,s)=$ derivation
Gaussian bell $\mathbf{E}(t)=$ derivation
$\mathrm{sin}_p(t,s)=$ $\sin_p(t,s)=$ derivation
$\mathrm{\sin}_1(t,s)$ $\sin_1(t,s)=$ derivation
$\widehat{\sin}_p(t,s)$ $\widehat{\sin}_p(t,s)=$ derivation
$\mathrm{\cos}_p(t,s)$ $\cos_p(t,s)=$ derivation
$\mathrm{\cos}_1(t,s)$ $\cos_1(t,s)=$ derivation
$\widehat{\cos}_p(t,s)$ $\widehat{\cos}_p(t,s)=$ derivation
$\sinh_p(t,s)$ $\sinh_p(t,s)=$ derivation
$\widehat{\sinh}_p(t,s)$ $\widehat{\sinh}_p(t,s)=$ derivation
$\cosh_p(t,s)$ $\cosh_p(t,s)=$ derivation
$\widehat{\cosh}_p(t,s)$ $\widehat{\cosh}_p(t,s)=$ derivation
Gamma function $\Gamma_{\overline{q^{\mathbb{Z}}}}(x,s)=$ derivation
Euler-Cauchy logarithm $L(t,s)=$ derivation
Bohner logarithm $L_p(t,s)=$ derivation
Jackson logarithm $\log_{\overline{q^{\mathbb{Z}}}} g(t)=$ derivation
Mozyrska-Torres logarithm $L_{\overline{q^{\mathbb{Z}}}}(t)=$ derivation
Laplace transform $\mathscr{L}_{\overline{q^{\mathbb{Z}}}}\{f\}(z;s)=$ derivation
Hilger circle derivation

References

Examples of time scales

$\Huge\mathbb{R}$
Real numbers
$\Huge\mathbb{Z}$
Integers
$\Huge{h\mathbb{Z}}$
Multiples of integers
$\Huge\mathbb{Z}^2$
Square integers
$\Huge\mathbb{H}$
Harmonic numbers
$\Huge\mathbb{T}_{\mathrm{iso}}$
Isolated points
$\Huge\sqrt[n]{\mathbb{N}_0}$
nth root numbers
$\Huge\mathbb{P}_{a,b}$
Evenly spaced intervals
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q>1$
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q<1$
$\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$
Closure of unit fractions
$\Huge\mathcal{C}$
Cantor set