Difference between revisions of "Quantum q greater than 1"
From timescalewiki
(One intermediate revision by the same user not shown) | |||
Line 140: | Line 140: | ||
|} | |} | ||
− | + | =References= | |
− | + | * {{PaperReference|Partial dynamic equations on time scales|2006|Billy Jackson||prev=Real numbers|next=Multiples of integers}}: Appendix | |
− | |||
− | |||
− | |||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<center>{{:Time scales footer}}</center> | <center>{{:Time scales footer}}</center> |
Latest revision as of 14:49, 15 January 2023
Let $q>1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{-2}, q^{-1}, 1, q, q^2, \ldots \}$ of quantum numbers is a time scale.
Forward jump: | $\sigma(t)=qt$ | derivation |
Forward graininess: | $\mu(t)=t(q-1)$ | derivation |
Backward jump: | $\rho(t)=$ | derivation |
Backward graininess: | $\nu(t)=$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t)= \left\{ \begin{array}{ll} \dfrac{f(qt)-f(t)}{t(q-1)} &; t\neq 0 \\ \displaystyle\lim_{h \rightarrow 0} \dfrac{f(h)-f(0)}{h} &; t=0 \end{array} \right.$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t)=$ | derivation |
$\Delta$-integral | $\begin{array}{ll} \displaystyle\int_s^t f(\tau) \Delta \tau &= \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} q^{k} (q-1) f(q^k) \\ \end{array}$ | derivation |
$\nabla$-integral | $\displaystyle\int_s^t f(\tau) \nabla \tau=$ | derivation |
$h_k(t,s)$ | $h_k(t,s)=\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^ns}{\sum_{i=0}^n q^i}$ | derivation |
$\hat{h}_k(t,s)$ | $\hat{h}_k(t,s)=$ | derivation |
$g_k(t,s)$ | $g_k(t,s)=$ | derivation |
$\hat{g}_k(t,s)$ | $\hat{g}_k(t,s)=$ | derivation |
$e_p(t,s)$ | $e_p(t,s)=\displaystyle\prod_{k=\log_q(s)}^{\log_q(t)-1} 1 + p(q^k)q^{k}(q-1)$ | derivation |
$\hat{e}_p(t,s)$ | $\hat{e}_p(t,s)=$ | derivation |
Gaussian bell | $\mathbf{E}(t)=$ | derivation |
$\mathrm{sin}_p(t,s)=$ | $\sin_p(t,s)=$ | derivation |
$\mathrm{\sin}_1(t,s)$ | $\sin_1(t,s)=$ | derivation |
$\widehat{\sin}_p(t,s)$ | $\widehat{\sin}_p(t,s)=$ | derivation |
$\mathrm{\cos}_p(t,s)$ | $\cos_p(t,s)=$ | derivation |
$\mathrm{\cos}_1(t,s)$ | $\cos_1(t,s)=$ | derivation |
$\widehat{\cos}_p(t,s)$ | $\widehat{\cos}_p(t,s)=$ | derivation |
$\sinh_p(t,s)$ | $\sinh_p(t,s)=$ | derivation |
$\widehat{\sinh}_p(t,s)$ | $\widehat{\sinh}_p(t,s)=$ | derivation |
$\cosh_p(t,s)$ | $\cosh_p(t,s)=$ | derivation |
$\widehat{\cosh}_p(t,s)$ | $\widehat{\cosh}_p(t,s)=$ | derivation |
Gamma function | $\Gamma_{\overline{q^{\mathbb{Z}}}}(x,s)=$ | derivation |
Euler-Cauchy logarithm | $L(t,s)=$ | derivation |
Bohner logarithm | $L_p(t,s)=$ | derivation |
Jackson logarithm | $\log_{\overline{q^{\mathbb{Z}}}} g(t)=$ | derivation |
Mozyrska-Torres logarithm | $L_{\overline{q^{\mathbb{Z}}}}(t)=$ | derivation |
Laplace transform | $\mathscr{L}_{\overline{q^{\mathbb{Z}}}}\{f\}(z;s)=$ | derivation |
Hilger circle | derivation |
References
- Billy Jackson: Partial dynamic equations on time scales (2006)... (previous)... (next): Appendix