Difference between revisions of "Quantum q greater than 1"
From timescalewiki
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Let $q>1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{-2}, q^{-1}, 1, q, q^2, \ldots \}$ of quantum numbers is a [[time scale]]. | Let $q>1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{-2}, q^{-1}, 1, q, q^2, \ldots \}$ of quantum numbers is a [[time scale]]. | ||
+ | |||
{| class="wikitable" | {| class="wikitable" | ||
− | |+$\mathbb{T}=\overline{q^{\mathbb{Z}}} | + | |+$\mathbb{T}=\overline{q^{\mathbb{Z}}}$ |
|- | |- | ||
− | | | + | |[[Forward jump]]: |
− | | | + | |$\sigma(t)=qt$ |
+ | |[[Derivation of forward jump for T=Quantum q greater than 1|derivation]] | ||
|- | |- | ||
− | | | + | |[[Forward graininess]]: |
− | |$\ | + | |$\mu(t)=t(q-1)$ |
+ | |[[Derivation of forward graininess for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Backward jump]]: | ||
+ | |$\rho(t)=$ | ||
+ | |[[Derivation of backward jump for T=Quantum q greater than 1|derivation]] | ||
|- | |- | ||
− | | | + | |[[Backward graininess]]: |
− | |$\ | + | |$\nu(t)=$ |
− | + | |[[Derivation of backward graininess for T=Quantum q greater than 1|derivation]] | |
− | |||
− | |||
|- | |- | ||
− | |[[ | + | |[[Delta derivative | $\Delta$-derivative]] |
− | | $f^{\Delta}(t)= \left\{ \begin{array}{ll} | + | |$f^{\Delta}(t)= \left\{ \begin{array}{ll} |
\dfrac{f(qt)-f(t)}{t(q-1)} &; t\neq 0 \\ | \dfrac{f(qt)-f(t)}{t(q-1)} &; t\neq 0 \\ | ||
\displaystyle\lim_{h \rightarrow 0} \dfrac{f(h)-f(0)}{h} &; t=0 | \displaystyle\lim_{h \rightarrow 0} \dfrac{f(h)-f(0)}{h} &; t=0 | ||
\end{array} \right.$ | \end{array} \right.$ | ||
+ | |[[Derivation of delta derivative for T=Quantum q greater than 1|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Nabla derivative | $\nabla$-derivative]] |
− | | $\begin{array}{ll} | + | |$f^{\nabla}(t)=$ |
+ | |[[Derivation of nabla derivative for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Delta integral | $\Delta$-integral]] | ||
+ | |$\begin{array}{ll} | ||
\displaystyle\int_s^t f(\tau) \Delta \tau &= \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} q^{k} (q-1) f(q^k) \\ | \displaystyle\int_s^t f(\tau) \Delta \tau &= \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} q^{k} (q-1) f(q^k) \\ | ||
\end{array}$ | \end{array}$ | ||
+ | |[[Derivation of delta integral for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Nabla integral | $\nabla$-integral]] | ||
+ | |$\displaystyle\int_s^t f(\tau) \nabla \tau=$ | ||
+ | |[[Derivation of nabla integral for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Delta hk|$h_k(t,s)$]] | ||
+ | |$h_k(t,s)=\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^ns}{\sum_{i=0}^n q^i}$ | ||
+ | |[[Derivation of delta hk for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Nabla hk|$\hat{h}_k(t,s)$]] | ||
+ | |$\hat{h}_k(t,s)=$ | ||
+ | |[[Derivation of nabla hk for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Delta gk|$g_k(t,s)$]] | ||
+ | |$g_k(t,s)=$ | ||
+ | |[[Derivation of delta gk for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Nabla gk|$\hat{g}_k(t,s)$]] | ||
+ | |$\hat{g}_k(t,s)=$ | ||
+ | |[[Derivation of nabla gk for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Delta exponential | $e_p(t,s)$]] | ||
+ | |$e_p(t,s)=\displaystyle\prod_{k=\log_q(s)}^{\log_q(t)-1} 1 + p(q^k)q^{k}(q-1)$ | ||
+ | |[[Derivation of delta exponential T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Nabla exponential | $\hat{e}_p(t,s)$]] | ||
+ | |$\hat{e}_p(t,s)=$ | ||
+ | |[[Derivation of nabla exponential T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Gaussian bell]] | ||
+ | |$\mathbf{E}(t)=$ | ||
+ | |[[Derivation of Gaussian bell for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Delta sine | $\mathrm{sin}_p(t,s)=$]] | ||
+ | |$\sin_p(t,s)=$ | ||
+ | |[[Derivation of delta sin sub p for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\sin}_1(t,s)$ | ||
+ | |$\sin_1(t,s)=$ | ||
+ | |[[Derivation of delta sin sub 1 for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sine|$\widehat{\sin}_p(t,s)$]] | ||
+ | |$\widehat{\sin}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sine sub p for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosine|$\mathrm{\cos}_p(t,s)$]] | ||
+ | |$\cos_p(t,s)=$ | ||
+ | |[[Derivation of delta cos sub p for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\cos}_1(t,s)$ | ||
+ | |$\cos_1(t,s)=$ | ||
+ | |[[Derivation of delta cos sub 1 for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosine|$\widehat{\cos}_p(t,s)$]] | ||
+ | |$\widehat{\cos}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cos sub 1 for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Delta sinh|$\sinh_p(t,s)$]] | ||
+ | |$\sinh_p(t,s)=$ | ||
+ | |[[Derivation of delta sinh sub p for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sinh|$\widehat{\sinh}_p(t,s)$]] | ||
+ | |$\widehat{\sinh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sinh sub p for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosh|$\cosh_p(t,s)$]] | ||
+ | |$\cosh_p(t,s)=$ | ||
+ | |[[Derivation of delta cosh sub p for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosh|$\widehat{\cosh}_p(t,s)$]] | ||
+ | |$\widehat{\cosh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cosh sub p for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Gamma function]] | ||
+ | |$\Gamma_{\overline{q^{\mathbb{Z}}}}(x,s)=$ | ||
+ | |[[Derivation of gamma function for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Euler-Cauchy logarithm]] | ||
+ | |$L(t,s)=$ | ||
+ | |[[Derivation of Euler-Cauchy logarithm for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Bohner logarithm]] | ||
+ | |$L_p(t,s)=$ | ||
+ | |[[Derivation of the Bohner logarithm for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Jackson logarithm]] | ||
+ | |$\log_{\overline{q^{\mathbb{Z}}}} g(t)=$ | ||
+ | |[[Derivation of the Jackson logarithm for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Mozyrska-Torres logarithm]] | ||
+ | |$L_{\overline{q^{\mathbb{Z}}}}(t)=$ | ||
+ | |[[Derivation of the Mozyrska-Torres logarithm for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Laplace transform]] | ||
+ | |$\mathscr{L}_{\overline{q^{\mathbb{Z}}}}\{f\}(z;s)=$ | ||
+ | |[[Derivation of Laplace transform for T=Quantum q greater than 1|derivation]] | ||
+ | |- | ||
+ | |[[Hilger circle]] | ||
+ | | | ||
+ | |[[Derivation of Hilger circle for T=Quantum q greater than 1|derivation]] | ||
|- | |- | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
+ | |||
+ | =References= | ||
+ | * {{PaperReference|Partial dynamic equations on time scales|2006|Billy Jackson||prev=Real numbers|next=Multiples of integers}}: Appendix | ||
+ | |||
+ | <center>{{:Time scales footer}}</center> |
Latest revision as of 14:49, 15 January 2023
Let $q>1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{-2}, q^{-1}, 1, q, q^2, \ldots \}$ of quantum numbers is a time scale.
Forward jump: | $\sigma(t)=qt$ | derivation |
Forward graininess: | $\mu(t)=t(q-1)$ | derivation |
Backward jump: | $\rho(t)=$ | derivation |
Backward graininess: | $\nu(t)=$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t)= \left\{ \begin{array}{ll} \dfrac{f(qt)-f(t)}{t(q-1)} &; t\neq 0 \\ \displaystyle\lim_{h \rightarrow 0} \dfrac{f(h)-f(0)}{h} &; t=0 \end{array} \right.$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t)=$ | derivation |
$\Delta$-integral | $\begin{array}{ll} \displaystyle\int_s^t f(\tau) \Delta \tau &= \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} q^{k} (q-1) f(q^k) \\ \end{array}$ | derivation |
$\nabla$-integral | $\displaystyle\int_s^t f(\tau) \nabla \tau=$ | derivation |
$h_k(t,s)$ | $h_k(t,s)=\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^ns}{\sum_{i=0}^n q^i}$ | derivation |
$\hat{h}_k(t,s)$ | $\hat{h}_k(t,s)=$ | derivation |
$g_k(t,s)$ | $g_k(t,s)=$ | derivation |
$\hat{g}_k(t,s)$ | $\hat{g}_k(t,s)=$ | derivation |
$e_p(t,s)$ | $e_p(t,s)=\displaystyle\prod_{k=\log_q(s)}^{\log_q(t)-1} 1 + p(q^k)q^{k}(q-1)$ | derivation |
$\hat{e}_p(t,s)$ | $\hat{e}_p(t,s)=$ | derivation |
Gaussian bell | $\mathbf{E}(t)=$ | derivation |
$\mathrm{sin}_p(t,s)=$ | $\sin_p(t,s)=$ | derivation |
$\mathrm{\sin}_1(t,s)$ | $\sin_1(t,s)=$ | derivation |
$\widehat{\sin}_p(t,s)$ | $\widehat{\sin}_p(t,s)=$ | derivation |
$\mathrm{\cos}_p(t,s)$ | $\cos_p(t,s)=$ | derivation |
$\mathrm{\cos}_1(t,s)$ | $\cos_1(t,s)=$ | derivation |
$\widehat{\cos}_p(t,s)$ | $\widehat{\cos}_p(t,s)=$ | derivation |
$\sinh_p(t,s)$ | $\sinh_p(t,s)=$ | derivation |
$\widehat{\sinh}_p(t,s)$ | $\widehat{\sinh}_p(t,s)=$ | derivation |
$\cosh_p(t,s)$ | $\cosh_p(t,s)=$ | derivation |
$\widehat{\cosh}_p(t,s)$ | $\widehat{\cosh}_p(t,s)=$ | derivation |
Gamma function | $\Gamma_{\overline{q^{\mathbb{Z}}}}(x,s)=$ | derivation |
Euler-Cauchy logarithm | $L(t,s)=$ | derivation |
Bohner logarithm | $L_p(t,s)=$ | derivation |
Jackson logarithm | $\log_{\overline{q^{\mathbb{Z}}}} g(t)=$ | derivation |
Mozyrska-Torres logarithm | $L_{\overline{q^{\mathbb{Z}}}}(t)=$ | derivation |
Laplace transform | $\mathscr{L}_{\overline{q^{\mathbb{Z}}}}\{f\}(z;s)=$ | derivation |
Hilger circle | derivation |
References
- Billy Jackson: Partial dynamic equations on time scales (2006)... (previous)... (next): Appendix