Difference between revisions of "Real numbers"

From timescalewiki
Jump to: navigation, search
Line 6: Line 6:
 
|[[Forward jump]]:
 
|[[Forward jump]]:
 
|$\sigma(t)=t$
 
|$\sigma(t)=t$
 +
|[[Derivation of forward jump for T=R|derivation]]
 
|-
 
|-
 
|[[Forward graininess]]:
 
|[[Forward graininess]]:
 
|$\mu(t)=0$
 
|$\mu(t)=0$
 +
|[[Derivation of forward graininess for T=R|derivation]]
 
|-
 
|-
 
|[[Backward jump]]:
 
|[[Backward jump]]:
 
|$\rho(t)=t$
 
|$\rho(t)=t$
 +
|[[Derivation of backward jump for T=R|derivation]]
 
|-
 
|-
 
|[[Backward graininess]]:
 
|[[Backward graininess]]:
 
|$\nu(t)=0$
 
|$\nu(t)=0$
 +
|[[Derivation of backward graininess for T=R|derivation]]
 
|-
 
|-
 
|[[Delta derivative | $\Delta$-derivative]]
 
|[[Delta derivative | $\Delta$-derivative]]
|$f^{\Delta}(t)=\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}=f'(t)$
+
|$f^{\Delta}(t)=\displaystyle\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}=f'(t)$
 +
|[[Derivation of delta derivative for T=R|derivation]]
 
|-
 
|-
 
|[[Nabla derivative | $\nabla$-derivative]]
 
|[[Nabla derivative | $\nabla$-derivative]]
|$f^{\nabla}(t) =\lim_{h \rightarrow 0} \dfrac{f(t)-f(t-h)}{h}= f'(t)$
+
|$f^{\nabla}(t) =\displaystyle\lim_{h \rightarrow 0} \dfrac{f(t)-f(t-h)}{h}= f'(t)$
 +
|[[Derivation of nabla derivative for T=R|derivation]]
 
|-
 
|-
 
|[[Delta integral | $\Delta$-integral]]
 
|[[Delta integral | $\Delta$-integral]]
| $\int_s^t f(\tau) \Delta \tau = \int_s^t f(\tau) d\tau$
+
|$\displaystyle\int_s^t f(\tau) \Delta \tau = \int_s^t f(\tau) d\tau$
 +
|[[Derivation of delta integral for T=R|derivation]]
 
|-
 
|-
 
|[[Nabla derivative | $\nabla$-derivative]]
 
|[[Nabla derivative | $\nabla$-derivative]]
|$\int_s^t f(\tau) \nabla \tau = \int_s^t f(\tau) d\tau$
+
|$\displaystyle\int_s^t f(\tau) \nabla \tau = \int_s^t f(\tau) d\tau$
 +
|[[Derivation of nabla integral for T=R|derivation]]
 +
|-
 +
|[[Delta hk|$h_k(t,s)$]]
 +
|
 +
|[[Derivation of delta hk for T=R|derivation]]
 +
|-
 +
|[[Nabla hk|$\hat{h}_k(t,s)$]]
 +
|
 +
|[[Derivation of nabla hk for T=R|derivation]]
 +
|-
 +
|[[Delta gk|$g_k(t,s)$]]
 +
|
 +
|[[Derivation of delta gk for T=R|derivation]]
 +
|-
 +
|[[Nabla gk|$\hat{g}_k(t,s)$]]
 +
|
 +
|[[Derivation of nabla gk for T=R|derivation]]
 
|-
 
|-
 
|[[Delta exponential | $e_p(t,s)=$]]  
 
|[[Delta exponential | $e_p(t,s)=$]]  
| $\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$
+
|$\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$
([[Derivation of delta exponential T=R|derivation]])
+
|[[Derivation of delta exponential T=R|derivation]]
 
|-
 
|-
 
|[[Nabla exponential | $\hat{e}_p(t,s)=$]]
 
|[[Nabla exponential | $\hat{e}_p(t,s)=$]]
 
|$\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$
 
|$\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$
([[Derivation of nabla exponential T=R|derivation]])
+
|[[Derivation of nabla exponential T=R|derivation]]
 
|-
 
|-
 
|[[Delta sine | $\mathrm{sin}_p(t,s)=$]]
 
|[[Delta sine | $\mathrm{sin}_p(t,s)=$]]
 
|$\sin\left( \displaystyle\int_s^t p(\tau) d\tau \right)$
 
|$\sin\left( \displaystyle\int_s^t p(\tau) d\tau \right)$
([[Derivation of sin sub p for T=R|derivation]])
+
|[[Derivation of delta sin sub p for T=R|derivation]]
 
|-
 
|-
 
|$\mathrm{\sin}_1(t,0)$
 
|$\mathrm{\sin}_1(t,0)$
 
|$\sin(t)$
 
|$\sin(t)$
([[Derivation of sin sub 1 for T=R|derivation]])
+
|[[Derivation of delta sin sub 1 for T=R|derivation]]
 
|-
 
|-
|$\mathrm{\cos}_p(t,s)$
+
|[[Nabla sine|$\widehat{\sin}_p(t,s)$]]
 +
|
 +
|[[Derivation of nabla sine sub p for T=R|derivation]]
 +
|-
 +
|[[Delta cosine|$\mathrm{\cos}_p(t,s)$]]
 
|$\cos \left( \displaystyle\int_s^t p(\tau) d\tau \right)$
 
|$\cos \left( \displaystyle\int_s^t p(\tau) d\tau \right)$
([[Derivation of cos sub p for T=R|derivation]])
+
|[[Derivation of delta cos sub p for T=R|derivation]]
 
|-
 
|-
 
|$\mathrm{\cos}_1(t,0)$
 
|$\mathrm{\cos}_1(t,0)$
 
|$\cos(t)$
 
|$\cos(t)$
([[Derivation of cos sub 1 for T=R|derivation]])
+
|[[Derivation of delta cos sub 1 for T=R|derivation]]
 +
|-
 +
|[[Nabla cosine|$\widehat{\cos}_p(t,s)$]]
 +
|
 +
|[[Derivation of nabla cos sub 1 for T=R|derivation]]
 +
|-
 +
|[[Delta sinh|$\sinh_p(t,s)$]]
 +
|
 +
|[[Derivation of delta sinh sub p for T=R|derivation]]
 +
|-
 +
|[[Nabla sinh|$\widehat{\sinh}_p(t,s)$]]
 +
|
 +
|[[Derivation of nabla sinh sub p for T=R|derivation]]
 +
|-
 +
|[[Delta cosh|$\cosh_p(t,s)$]]
 +
|
 +
|[[Derivation of delta cosh sub p for T=R|derivation]]
 +
|-
 +
|[[Nabla cosh|$\widehat{\cosh}_p(t,s)$]]
 +
|
 +
|[[Derivation of nabla cosh sub p for T=R|derivation]]
 
|-
 
|-
 
|[[Hilger circle]]  
 
|[[Hilger circle]]  
 
|
 
|
 +
|[[Derivation of Hilger circle for T=R|derivation]]
 
|-
 
|-
 
|[[Laplace transform]]
 
|[[Laplace transform]]
 
|$\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_0^{\infty} f(\tau) e^{-z\tau} d\tau$
 
|$\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_0^{\infty} f(\tau) e^{-z\tau} d\tau$
 +
|[[Derivation of Laplace transform for T=R|derivation]]
 
|-
 
|-
 
|[[Gamma function]]
 
|[[Gamma function]]
 
|$\Gamma_{\mathbb{R}}(x,s)=\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$
 
|$\Gamma_{\mathbb{R}}(x,s)=\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$
 +
|[[Derivation of gamma function for T=R|derivation]]
 
|-
 
|-
 
|}
 
|}

Revision as of 23:46, 21 May 2015

The set $\mathbb{R}$ of real numbers is a time scale. In this time scale, all derivatives reduce to the clasical derivative and the integrals reduce to the Riemann integral.

$\mathbb{T}=\mathbb{R}$
Forward jump: $\sigma(t)=t$ derivation
Forward graininess: $\mu(t)=0$ derivation
Backward jump: $\rho(t)=t$ derivation
Backward graininess: $\nu(t)=0$ derivation
$\Delta$-derivative $f^{\Delta}(t)=\displaystyle\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}=f'(t)$ derivation
$\nabla$-derivative $f^{\nabla}(t) =\displaystyle\lim_{h \rightarrow 0} \dfrac{f(t)-f(t-h)}{h}= f'(t)$ derivation
$\Delta$-integral $\displaystyle\int_s^t f(\tau) \Delta \tau = \int_s^t f(\tau) d\tau$ derivation
$\nabla$-derivative $\displaystyle\int_s^t f(\tau) \nabla \tau = \int_s^t f(\tau) d\tau$ derivation
$h_k(t,s)$ derivation
$\hat{h}_k(t,s)$ derivation
$g_k(t,s)$ derivation
$\hat{g}_k(t,s)$ derivation
$e_p(t,s)=$ $\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$ derivation
$\hat{e}_p(t,s)=$ $\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$ derivation
$\mathrm{sin}_p(t,s)=$ $\sin\left( \displaystyle\int_s^t p(\tau) d\tau \right)$ derivation
$\mathrm{\sin}_1(t,0)$ $\sin(t)$ derivation
$\widehat{\sin}_p(t,s)$ derivation
$\mathrm{\cos}_p(t,s)$ $\cos \left( \displaystyle\int_s^t p(\tau) d\tau \right)$ derivation
$\mathrm{\cos}_1(t,0)$ $\cos(t)$ derivation
$\widehat{\cos}_p(t,s)$ derivation
$\sinh_p(t,s)$ derivation
$\widehat{\sinh}_p(t,s)$ derivation
$\cosh_p(t,s)$ derivation
$\widehat{\cosh}_p(t,s)$ derivation
Hilger circle derivation
Laplace transform $\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_0^{\infty} f(\tau) e^{-z\tau} d\tau$ derivation
Gamma function $\Gamma_{\mathbb{R}}(x,s)=\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$ derivation