Difference between revisions of "Main Page"
(→Special functions on time scales) |
(→Calculus on time scales) |
||
Line 9: | Line 9: | ||
*[[delta_derivative | $\Delta$-derivative]] | *[[delta_derivative | $\Delta$-derivative]] | ||
*[[nabla_derivative | $\nabla$-derivative]] | *[[nabla_derivative | $\nabla$-derivative]] | ||
− | *[[diamond derivative | $\ | + | *[[diamond alpha derivative | $\Diamond_{\alpha}$-derivative]] |
*[[delta_integral | $\Delta$-integral]] | *[[delta_integral | $\Delta$-integral]] | ||
*[[nabla integral | $\nabla$-integral]] | *[[nabla integral | $\nabla$-integral]] |
Revision as of 08:01, 10 March 2015
This wiki is a resource for people who do research in time scale calculus. Time scale calculus is a unification and extension of differential and difference calculus in which one does calculus upon a set called a time scale $\mathbb{T}$. When $\mathbb{T}=\mathbb{R}$ the resulting theory is differential calculus but when $\mathbb{T}=\mathbb{Z}$ the resulting theory is difference calculus. Time scales also include any closed subset of $\mathbb{R}$, so more exotic sets such as the Cantor set are also considered in the theory.
Contents
How to get access to edit this wiki
In order to temper anonymous edits by web bots, I have restricted registration. Please send me an e-mail at tomcuchta.....at......gmail......dot.....com with the subject "Time scale wiki registration". When I receive the e-mail, I will enable registration for you.
Calculus on time scales
- Abel's theorem
- List of time scales
- $\Delta$-derivative
- $\nabla$-derivative
- $\Diamond_{\alpha}$-derivative
- $\Delta$-integral
- $\nabla$-integral
- $\Diamond$-integral
- Dynamic Equations
- Complex calculus on time scales
- Convergence of time scales
- Function spaces
- Laplace transform
- L'Hospital's Rule
- Mean value theorem
- Fourier transform
- Regressive function
- Taylor's formula
- Variation of parameters
- Wronskian
Probability Theory
- Cumulant generating function
- Cumulative distribution function
- Moments
- Probability density function
- Joint time scales probability density function
- Moment generating function
- Expected value
- Variance
Examples of time scales
- The real line: $\mathbb{R}$
- The integers: $\mathbb{Z} = \{\ldots, -1,0,1,\ldots\}$
- Multiples of integers: $h\mathbb{Z} = \{ht \colon t \in \mathbb{Z}\}$
- Quantum numbers ($q>1$): $\overline{q^{\mathbb{Z}}}$
- Quantum numbers ($q<1$): $\overline{q^{\mathbb{Z}}}$
- Square integers: $\mathbb{Z}^2 = \{t^2 \colon t \in \mathbb{Z} \}$
- Harmonic numbers: $\mathbb{H}=\left\{\displaystyle\sum_{k=1}^n \dfrac{1}{k} \colon n \in \mathbb{Z}^+ \right\}$
- The closure of the unit fractions: $\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$
- Isolated points: $\mathbb{T}=\{\ldots, t_{-1}, t_{0}, t_1, \ldots\}$
Inequalities
- Bernoulli inequality
- Bihari inequality
- Cauchy-Schwarz inequality
- Gronwall inequality
- Hölder inequality
- Jensen inequality
- Lyapunov inequality
- Markov inequality
- Minkowski inequality
- Opial inequality
- Tschebycheff inequality
- Wirtinger inequality
Special functions on time scales
- Polynomials
- $\Delta$-$\cos_p$
- $\Delta$-$\cosh_p$
- $\Delta$-$e_p$
- $\Delta$-$\sin_p$
- $\Delta$-$\sinh_p$
- Gamma function
- Hyperbolic functions
- Logarithms
- $\nabla$-$\cos_p$
- $\nabla$-$\cosh_p$
- $\nabla$-$\hat{e}_p$
- $\nabla$-$\sin_p$
- $\nabla$-$\sinh_p$
- Trigonometric functions
- Gaussian bell