Difference between revisions of "Format notes"

From timescalewiki
Jump to: navigation, search
(Categories)
 
(16 intermediate revisions by the same user not shown)
Line 16: Line 16:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=Galleries=
 +
Put images into galleries. Thumbnails and frames break the theorem/proof box template. The code
 +
<pre><div align="center">
 +
<gallery>
 +
File:Arccos.png|Graph of $\mathrm{arccos}$ on $[-1,1]$.
 +
File:Complex arccos.jpg|[[Domain coloring]] of [[analytic continuation]].
 +
</gallery>
 +
</div></pre>
  
 
=Generic list of time scales=
 
=Generic list of time scales=
 +
The code
 +
<pre>{| class="wikitable"
 +
|+Time Scale foo Functions
 +
|-
 +
|$\mathbb{T}$
 +
|
 +
|-
 +
|[[Real_numbers | $\mathbb{R}$]]
 +
|$foo(t)=  $
 +
|-
 +
|[[Integers | $\mathbb{Z}$]]
 +
|$foo(t) = $
 +
|-
 +
|[[Multiples_of_integers | $h\mathbb{Z}$]]
 +
| $foo(t) = $
 +
|-
 +
| [[Square_integers | $\mathbb{Z}^2$]]
 +
| $foo(t) = $
 +
|-
 +
|[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q &gt; 1$]]
 +
| $foo(t) = $
 +
|-
 +
|[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q &lt; 1$]]
 +
| $foo(t) =$
 +
|-
 +
|[[Harmonic_numbers | $\mathbb{H}$]]
 +
|$foo(t) = $
 +
|}</pre>
 +
generates
 
{| class="wikitable"
 
{| class="wikitable"
 
|+Time Scale foo Functions
 
|+Time Scale foo Functions
Line 25: Line 63:
 
|-
 
|-
 
|[[Real_numbers | $\mathbb{R}$]]
 
|[[Real_numbers | $\mathbb{R}$]]
|$foo_p(t)=  $
+
|$foo(t)=  $
 
|-
 
|-
 
|[[Integers | $\mathbb{Z}$]]
 
|[[Integers | $\mathbb{Z}$]]
|$foo_p(t) = $
+
|$foo(t) = $
 
|-
 
|-
 
|[[Multiples_of_integers | $h\mathbb{Z}$]]
 
|[[Multiples_of_integers | $h\mathbb{Z}$]]
| $foo_p(t) = $
+
| $foo(t) = $
 
|-
 
|-
 
| [[Square_integers | $\mathbb{Z}^2$]]
 
| [[Square_integers | $\mathbb{Z}^2$]]
| $foo_p(t) = $
+
| $foo(t) = $
 
|-
 
|-
 
|[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q &gt; 1$]]
 
|[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q &gt; 1$]]
| $foo_p(t) = $
+
| $foo(t) = $
 
|-
 
|-
 
|[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q &lt; 1$]]
 
|[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q &lt; 1$]]
| $foo_p(t) =$
+
| $foo(t) =$
 
|-
 
|-
 
|[[Harmonic_numbers | $\mathbb{H}$]]
 
|[[Harmonic_numbers | $\mathbb{H}$]]
|$foo_p(t) = $
+
|$foo(t) = $
 
|}
 
|}
  
=BiBTeX=
+
=General format for time scale pages=
Place all references at the bottom of the document below a
+
{| class="wikitable"
<pre>=References=</pre>
+
|+$\mathbb{T}=TIMESCALESYMBOL$
inside of  
+
|-
<pre><bibtex>....</bibtex></pre>
+
|[[Forward jump]]:
tags. Use the following code as a template:
+
|$\sigma(t)=$
<pre><div id="deots"></div><bibtex>
+
|[[Derivation of forward jump for T=THETIMESCALE|derivation]]
@inproceedings{MR1843232,
+
|-
  title="Dynamic equations on time scales",
+
|[[Forward graininess]]:
  author="Bohner, Martin and Peterson, Allan",
+
|$\mu(t)=$
  booktitle="Birkhäuser Boston, Inc., Boston, MA",
+
|[[Derivation of forward graininess for T=THETIMESCALE|derivation]]
  year="2001",
+
|-
  doi="10.1007/978-1-4612-0201-1",
+
|[[Backward jump]]:
  url="http://dx.doi.org/10.1007/978-1-4612-0201-1"
+
|$\rho(t)=$
}
+
|[[Derivation of backward jump for T=THETIMESCALE|derivation]]
</bibtex></pre>
+
|-
creates
+
|[[Backward graininess]]:
<div id="***ABC***"></div><bibtex>
+
|$\nu(t)=$
@inproceedings{deots,
+
|[[Derivation of backward graininess for T=THETIMESCALE|derivation]]
  title="Dynamic equations on time scales",
+
|-
  author="Bohner, Martin and Peterson, Allan",
+
|[[Delta derivative | $\Delta$-derivative]]
  booktitle="Birkhäuser Boston, Inc., Boston, MA",
+
|$f^{\Delta}(t)=$
  year="2001",
+
|[[Derivation of delta derivative for T=THETIMESCALE|derivation]]
  doi="10.1007/978-1-4612-0201-1",
+
|-
  url="http://dx.doi.org/10.1007/978-1-4612-0201-1"
+
|[[Nabla derivative | $\nabla$-derivative]]
}
+
|$f^{\nabla}(t)=$
</bibtex>
+
|[[Derivation of nabla derivative for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Delta integral | $\Delta$-integral]]
 +
|$\displaystyle\int_s^t f(\tau) \Delta \tau=$
 +
|[[Derivation of delta integral for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Nabla integral | $\nabla$-integral]]
 +
|$\displaystyle\int_s^t f(\tau) \nabla \tau=$
 +
|[[Derivation of nabla integral for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Delta hk|$h_k(t,s)$]]
 +
|$h_k(t,s)=$
 +
|[[Derivation of delta hk for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Nabla hk|$\hat{h}_k(t,s)$]]
 +
|$\hat{h}_k(t,s)=$
 +
|[[Derivation of nabla hk for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Delta gk|$g_k(t,s)$]]
 +
|$g_k(t,s)=$
 +
|[[Derivation of delta gk for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Nabla gk|$\hat{g}_k(t,s)$]]
 +
|$\hat{g}_k(t,s)=$
 +
|[[Derivation of nabla gk for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Delta exponential | $e_p(t,s)$]]
 +
|$e_p(t,s)=$
 +
|[[Derivation of delta exponential T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Nabla exponential | $\hat{e}_p(t,s)$]]
 +
|$\hat{e}_p(t,s)=$
 +
|[[Derivation of nabla exponential T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Gaussian bell]]
 +
|$\mathbf{E}(t)=$
 +
|[[Derivation of Gaussian bell for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Delta sine | $\mathrm{sin}_p(t,s)=$]]
 +
|$\sin_p(t,s)=$
 +
|[[Derivation of delta sin sub p for T=THETIMESCALE|derivation]]
 +
|-
 +
|$\mathrm{\sin}_1(t,s)$
 +
|$\sin_1(t,s)=$
 +
|[[Derivation of delta sin sub 1 for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Nabla sine|$\widehat{\sin}_p(t,s)$]]
 +
|$\widehat{\sin}_p(t,s)=$
 +
|[[Derivation of nabla sine sub p for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Delta cosine|$\mathrm{\cos}_p(t,s)$]]
 +
|$\cos_p(t,s)=$
 +
|[[Derivation of delta cos sub p for T=THETIMESCALE|derivation]]
 +
|-
 +
|$\mathrm{\cos}_1(t,s)$
 +
|$\cos_1(t,s)=$
 +
|[[Derivation of delta cos sub 1 for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Nabla cosine|$\widehat{\cos}_p(t,s)$]]
 +
|$\widehat{\cos}_p(t,s)=$
 +
|[[Derivation of nabla cos sub 1 for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Delta sinh|$\sinh_p(t,s)$]]
 +
|$\sinh_p(t,s)=$
 +
|[[Derivation of delta sinh sub p for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Nabla sinh|$\widehat{\sinh}_p(t,s)$]]
 +
|$\widehat{\sinh}_p(t,s)=$
 +
|[[Derivation of nabla sinh sub p for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Delta cosh|$\cosh_p(t,s)$]]
 +
|$\cosh_p(t,s)=$
 +
|[[Derivation of delta cosh sub p for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Nabla cosh|$\widehat{\cosh}_p(t,s)$]]
 +
|$\widehat{\cosh}_p(t,s)=$
 +
|[[Derivation of nabla cosh sub p for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Gamma function]]
 +
|$\Gamma_{TIMESCALESYMBOL}(x,s)=$
 +
|[[Derivation of gamma function for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Euler-Cauchy logarithm]]
 +
|$L(t,s)=$
 +
|[[Derivation of Euler-Cauchy logarithm for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Bohner logarithm]]
 +
|$L_p(t,s)=$
 +
|[[Derivation of the Bohner logarithm for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Jackson logarithm]]
 +
|$\log_{TIMESCALESYMBOL} g(t)=$
 +
|[[Derivation of the Jackson logarithm for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Mozyrska-Torres logarithm]]
 +
|$L_{TIMESCALESYMBOL}(t)=$
 +
|[[Derivation of the Mozyrska-Torres logarithm for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Laplace transform]]
 +
|$\mathscr{L}_{TIMESCALESYMBOL}\{f\}(z;s)=$
 +
|[[Derivation of Laplace transform for T=THETIMESCALE|derivation]]
 +
|-
 +
|[[Hilger circle]]
 +
|
 +
|[[Derivation of Hilger circle for T=THETIMESCALE|derivation]]
 +
|-
 +
|}
  
We use the code
+
=Categories=
<pre><sup>[[#***ABC*** | pp.##]]</sup></pre>
+
For special functions:
to create a link in the main text that looks like
+
<pre>
<sup>[[#***ABC*** | pp.##]]</sup>
+
[[Category:plot]]
which links to the reference next to <pre><div id="***ABC***"></pre>
+
[[Category:deltaexponential]]
 +
[[Category:timescale:integers]]
 +
[[Category:specialfunction]]
 +
</pre>
 +
For glyphs:
 +
<pre>
 +
[[Category:deltasineglyph]]
 +
[[Category:glyph]]
 +
[[Category:timescale:integers]]
 +
[[Category:deltasine]]
 +
</pre>

Latest revision as of 07:54, 1 June 2016

This is a list of common code templates and styles we use at timescalewiki.

Theorem/proof box template

The code

<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>THEOREM/LEMMA/PROPOSITION:</strong> STATEMENT OF THEOREM
<div class="mw-collapsible-content">
<strong>Proof:</strong> proof goes here █ 
</div>
</div>

creates

THEOREM/LEMMA/PROPOSITION: STATEMENT OF THEOREM

Proof: proof goes here █

Galleries

Put images into galleries. Thumbnails and frames break the theorem/proof box template. The code

<div align="center">
<gallery>
File:Arccos.png|Graph of $\mathrm{arccos}$ on $[-1,1]$.
File:Complex arccos.jpg|[[Domain coloring]] of [[analytic continuation]].
</gallery>
</div>

Generic list of time scales

The code

{| class="wikitable"
|+Time Scale foo Functions
|-
|$\mathbb{T}$
|
|-
|[[Real_numbers | $\mathbb{R}$]]
|$foo(t)=  $
|-
|[[Integers | $\mathbb{Z}$]]
|$foo(t) = $
|-
|[[Multiples_of_integers | $h\mathbb{Z}$]]
| $foo(t) = $
|-
| [[Square_integers | $\mathbb{Z}^2$]]
| $foo(t) = $
|-
|[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]]
| $foo(t) = $
|-
|[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]]
| $foo(t) =$
|-
|[[Harmonic_numbers | $\mathbb{H}$]]
|$foo(t) = $
|}

generates

Time Scale foo Functions
$\mathbb{T}$
$\mathbb{R}$ $foo(t)= $
$\mathbb{Z}$ $foo(t) = $
$h\mathbb{Z}$ $foo(t) = $
$\mathbb{Z}^2$ $foo(t) = $
$\overline{q^{\mathbb{Z}}}, q > 1$ $foo(t) = $
$\overline{q^{\mathbb{Z}}}, q < 1$ $foo(t) =$
$\mathbb{H}$ $foo(t) = $

General format for time scale pages

$\mathbb{T}=TIMESCALESYMBOL$
Forward jump: $\sigma(t)=$ derivation
Forward graininess: $\mu(t)=$ derivation
Backward jump: $\rho(t)=$ derivation
Backward graininess: $\nu(t)=$ derivation
$\Delta$-derivative $f^{\Delta}(t)=$ derivation
$\nabla$-derivative $f^{\nabla}(t)=$ derivation
$\Delta$-integral $\displaystyle\int_s^t f(\tau) \Delta \tau=$ derivation
$\nabla$-integral $\displaystyle\int_s^t f(\tau) \nabla \tau=$ derivation
$h_k(t,s)$ $h_k(t,s)=$ derivation
$\hat{h}_k(t,s)$ $\hat{h}_k(t,s)=$ derivation
$g_k(t,s)$ $g_k(t,s)=$ derivation
$\hat{g}_k(t,s)$ $\hat{g}_k(t,s)=$ derivation
$e_p(t,s)$ $e_p(t,s)=$ derivation
$\hat{e}_p(t,s)$ $\hat{e}_p(t,s)=$ derivation
Gaussian bell $\mathbf{E}(t)=$ derivation
$\mathrm{sin}_p(t,s)=$ $\sin_p(t,s)=$ derivation
$\mathrm{\sin}_1(t,s)$ $\sin_1(t,s)=$ derivation
$\widehat{\sin}_p(t,s)$ $\widehat{\sin}_p(t,s)=$ derivation
$\mathrm{\cos}_p(t,s)$ $\cos_p(t,s)=$ derivation
$\mathrm{\cos}_1(t,s)$ $\cos_1(t,s)=$ derivation
$\widehat{\cos}_p(t,s)$ $\widehat{\cos}_p(t,s)=$ derivation
$\sinh_p(t,s)$ $\sinh_p(t,s)=$ derivation
$\widehat{\sinh}_p(t,s)$ $\widehat{\sinh}_p(t,s)=$ derivation
$\cosh_p(t,s)$ $\cosh_p(t,s)=$ derivation
$\widehat{\cosh}_p(t,s)$ $\widehat{\cosh}_p(t,s)=$ derivation
Gamma function $\Gamma_{TIMESCALESYMBOL}(x,s)=$ derivation
Euler-Cauchy logarithm $L(t,s)=$ derivation
Bohner logarithm $L_p(t,s)=$ derivation
Jackson logarithm $\log_{TIMESCALESYMBOL} g(t)=$ derivation
Mozyrska-Torres logarithm $L_{TIMESCALESYMBOL}(t)=$ derivation
Laplace transform $\mathscr{L}_{TIMESCALESYMBOL}\{f\}(z;s)=$ derivation
Hilger circle derivation

Categories

For special functions:

[[Category:plot]]
[[Category:deltaexponential]]
[[Category:timescale:integers]]
[[Category:specialfunction]]

For glyphs:

[[Category:deltasineglyph]]
[[Category:glyph]]
[[Category:timescale:integers]]
[[Category:deltasine]]