Difference between revisions of "Format notes"
From timescalewiki
(→Categories) |
|||
(16 intermediate revisions by the same user not shown) | |||
Line 16: | Line 16: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | =Galleries= | ||
+ | Put images into galleries. Thumbnails and frames break the theorem/proof box template. The code | ||
+ | <pre><div align="center"> | ||
+ | <gallery> | ||
+ | File:Arccos.png|Graph of $\mathrm{arccos}$ on $[-1,1]$. | ||
+ | File:Complex arccos.jpg|[[Domain coloring]] of [[analytic continuation]]. | ||
+ | </gallery> | ||
+ | </div></pre> | ||
=Generic list of time scales= | =Generic list of time scales= | ||
+ | The code | ||
+ | <pre>{| class="wikitable" | ||
+ | |+Time Scale foo Functions | ||
+ | |- | ||
+ | |$\mathbb{T}$ | ||
+ | | | ||
+ | |- | ||
+ | |[[Real_numbers | $\mathbb{R}$]] | ||
+ | |$foo(t)= $ | ||
+ | |- | ||
+ | |[[Integers | $\mathbb{Z}$]] | ||
+ | |$foo(t) = $ | ||
+ | |- | ||
+ | |[[Multiples_of_integers | $h\mathbb{Z}$]] | ||
+ | | $foo(t) = $ | ||
+ | |- | ||
+ | | [[Square_integers | $\mathbb{Z}^2$]] | ||
+ | | $foo(t) = $ | ||
+ | |- | ||
+ | |[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]] | ||
+ | | $foo(t) = $ | ||
+ | |- | ||
+ | |[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]] | ||
+ | | $foo(t) =$ | ||
+ | |- | ||
+ | |[[Harmonic_numbers | $\mathbb{H}$]] | ||
+ | |$foo(t) = $ | ||
+ | |}</pre> | ||
+ | generates | ||
{| class="wikitable" | {| class="wikitable" | ||
|+Time Scale foo Functions | |+Time Scale foo Functions | ||
Line 25: | Line 63: | ||
|- | |- | ||
|[[Real_numbers | $\mathbb{R}$]] | |[[Real_numbers | $\mathbb{R}$]] | ||
− | |$ | + | |$foo(t)= $ |
|- | |- | ||
|[[Integers | $\mathbb{Z}$]] | |[[Integers | $\mathbb{Z}$]] | ||
− | |$ | + | |$foo(t) = $ |
|- | |- | ||
|[[Multiples_of_integers | $h\mathbb{Z}$]] | |[[Multiples_of_integers | $h\mathbb{Z}$]] | ||
− | | $ | + | | $foo(t) = $ |
|- | |- | ||
| [[Square_integers | $\mathbb{Z}^2$]] | | [[Square_integers | $\mathbb{Z}^2$]] | ||
− | | $ | + | | $foo(t) = $ |
|- | |- | ||
|[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]] | |[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]] | ||
− | | $ | + | | $foo(t) = $ |
|- | |- | ||
|[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]] | |[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]] | ||
− | | $ | + | | $foo(t) =$ |
|- | |- | ||
|[[Harmonic_numbers | $\mathbb{H}$]] | |[[Harmonic_numbers | $\mathbb{H}$]] | ||
− | |$ | + | |$foo(t) = $ |
|} | |} | ||
− | = | + | =General format for time scale pages= |
− | + | {| class="wikitable" | |
− | + | |+$\mathbb{T}=TIMESCALESYMBOL$ | |
− | + | |- | |
− | + | |[[Forward jump]]: | |
− | + | |$\sigma(t)=$ | |
− | + | |[[Derivation of forward jump for T=THETIMESCALE|derivation]] | |
− | + | |- | |
− | + | |[[Forward graininess]]: | |
− | + | |$\mu(t)=$ | |
− | + | |[[Derivation of forward graininess for T=THETIMESCALE|derivation]] | |
− | + | |- | |
− | + | |[[Backward jump]]: | |
− | + | |$\rho(t)=$ | |
− | + | |[[Derivation of backward jump for T=THETIMESCALE|derivation]] | |
− | + | |- | |
− | + | |[[Backward graininess]]: | |
− | + | |$\nu(t)=$ | |
− | + | |[[Derivation of backward graininess for T=THETIMESCALE|derivation]] | |
− | + | |- | |
− | + | |[[Delta derivative | $\Delta$-derivative]] | |
− | + | |$f^{\Delta}(t)=$ | |
− | + | |[[Derivation of delta derivative for T=THETIMESCALE|derivation]] | |
− | + | |- | |
− | + | |[[Nabla derivative | $\nabla$-derivative]] | |
− | + | |$f^{\nabla}(t)=$ | |
− | + | |[[Derivation of nabla derivative for T=THETIMESCALE|derivation]] | |
+ | |- | ||
+ | |[[Delta integral | $\Delta$-integral]] | ||
+ | |$\displaystyle\int_s^t f(\tau) \Delta \tau=$ | ||
+ | |[[Derivation of delta integral for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Nabla integral | $\nabla$-integral]] | ||
+ | |$\displaystyle\int_s^t f(\tau) \nabla \tau=$ | ||
+ | |[[Derivation of nabla integral for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Delta hk|$h_k(t,s)$]] | ||
+ | |$h_k(t,s)=$ | ||
+ | |[[Derivation of delta hk for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Nabla hk|$\hat{h}_k(t,s)$]] | ||
+ | |$\hat{h}_k(t,s)=$ | ||
+ | |[[Derivation of nabla hk for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Delta gk|$g_k(t,s)$]] | ||
+ | |$g_k(t,s)=$ | ||
+ | |[[Derivation of delta gk for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Nabla gk|$\hat{g}_k(t,s)$]] | ||
+ | |$\hat{g}_k(t,s)=$ | ||
+ | |[[Derivation of nabla gk for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Delta exponential | $e_p(t,s)$]] | ||
+ | |$e_p(t,s)=$ | ||
+ | |[[Derivation of delta exponential T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Nabla exponential | $\hat{e}_p(t,s)$]] | ||
+ | |$\hat{e}_p(t,s)=$ | ||
+ | |[[Derivation of nabla exponential T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Gaussian bell]] | ||
+ | |$\mathbf{E}(t)=$ | ||
+ | |[[Derivation of Gaussian bell for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Delta sine | $\mathrm{sin}_p(t,s)=$]] | ||
+ | |$\sin_p(t,s)=$ | ||
+ | |[[Derivation of delta sin sub p for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\sin}_1(t,s)$ | ||
+ | |$\sin_1(t,s)=$ | ||
+ | |[[Derivation of delta sin sub 1 for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sine|$\widehat{\sin}_p(t,s)$]] | ||
+ | |$\widehat{\sin}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sine sub p for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosine|$\mathrm{\cos}_p(t,s)$]] | ||
+ | |$\cos_p(t,s)=$ | ||
+ | |[[Derivation of delta cos sub p for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\cos}_1(t,s)$ | ||
+ | |$\cos_1(t,s)=$ | ||
+ | |[[Derivation of delta cos sub 1 for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosine|$\widehat{\cos}_p(t,s)$]] | ||
+ | |$\widehat{\cos}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cos sub 1 for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Delta sinh|$\sinh_p(t,s)$]] | ||
+ | |$\sinh_p(t,s)=$ | ||
+ | |[[Derivation of delta sinh sub p for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sinh|$\widehat{\sinh}_p(t,s)$]] | ||
+ | |$\widehat{\sinh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sinh sub p for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosh|$\cosh_p(t,s)$]] | ||
+ | |$\cosh_p(t,s)=$ | ||
+ | |[[Derivation of delta cosh sub p for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosh|$\widehat{\cosh}_p(t,s)$]] | ||
+ | |$\widehat{\cosh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cosh sub p for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Gamma function]] | ||
+ | |$\Gamma_{TIMESCALESYMBOL}(x,s)=$ | ||
+ | |[[Derivation of gamma function for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Euler-Cauchy logarithm]] | ||
+ | |$L(t,s)=$ | ||
+ | |[[Derivation of Euler-Cauchy logarithm for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Bohner logarithm]] | ||
+ | |$L_p(t,s)=$ | ||
+ | |[[Derivation of the Bohner logarithm for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Jackson logarithm]] | ||
+ | |$\log_{TIMESCALESYMBOL} g(t)=$ | ||
+ | |[[Derivation of the Jackson logarithm for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Mozyrska-Torres logarithm]] | ||
+ | |$L_{TIMESCALESYMBOL}(t)=$ | ||
+ | |[[Derivation of the Mozyrska-Torres logarithm for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Laplace transform]] | ||
+ | |$\mathscr{L}_{TIMESCALESYMBOL}\{f\}(z;s)=$ | ||
+ | |[[Derivation of Laplace transform for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Hilger circle]] | ||
+ | | | ||
+ | |[[Derivation of Hilger circle for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |} | ||
− | + | =Categories= | |
− | <pre> | + | For special functions: |
− | + | <pre> | |
− | + | [[Category:plot]] | |
− | + | [[Category:deltaexponential]] | |
+ | [[Category:timescale:integers]] | ||
+ | [[Category:specialfunction]] | ||
+ | </pre> | ||
+ | For glyphs: | ||
+ | <pre> | ||
+ | [[Category:deltasineglyph]] | ||
+ | [[Category:glyph]] | ||
+ | [[Category:timescale:integers]] | ||
+ | [[Category:deltasine]] | ||
+ | </pre> |
Latest revision as of 07:54, 1 June 2016
This is a list of common code templates and styles we use at timescalewiki.
Contents
Theorem/proof box template
The code
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>THEOREM/LEMMA/PROPOSITION:</strong> STATEMENT OF THEOREM <div class="mw-collapsible-content"> <strong>Proof:</strong> proof goes here █ </div> </div>
creates
THEOREM/LEMMA/PROPOSITION: STATEMENT OF THEOREM
Proof: proof goes here █
Galleries
Put images into galleries. Thumbnails and frames break the theorem/proof box template. The code
<div align="center"> <gallery> File:Arccos.png|Graph of $\mathrm{arccos}$ on $[-1,1]$. File:Complex arccos.jpg|[[Domain coloring]] of [[analytic continuation]]. </gallery> </div>
Generic list of time scales
The code
{| class="wikitable" |+Time Scale foo Functions |- |$\mathbb{T}$ | |- |[[Real_numbers | $\mathbb{R}$]] |$foo(t)= $ |- |[[Integers | $\mathbb{Z}$]] |$foo(t) = $ |- |[[Multiples_of_integers | $h\mathbb{Z}$]] | $foo(t) = $ |- | [[Square_integers | $\mathbb{Z}^2$]] | $foo(t) = $ |- |[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]] | $foo(t) = $ |- |[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]] | $foo(t) =$ |- |[[Harmonic_numbers | $\mathbb{H}$]] |$foo(t) = $ |}
generates
$\mathbb{T}$ | |
$\mathbb{R}$ | $foo(t)= $ |
$\mathbb{Z}$ | $foo(t) = $ |
$h\mathbb{Z}$ | $foo(t) = $ |
$\mathbb{Z}^2$ | $foo(t) = $ |
$\overline{q^{\mathbb{Z}}}, q > 1$ | $foo(t) = $ |
$\overline{q^{\mathbb{Z}}}, q < 1$ | $foo(t) =$ |
$\mathbb{H}$ | $foo(t) = $ |
General format for time scale pages
Categories
For special functions:
[[Category:plot]] [[Category:deltaexponential]] [[Category:timescale:integers]] [[Category:specialfunction]]
For glyphs:
[[Category:deltasineglyph]] [[Category:glyph]] [[Category:timescale:integers]] [[Category:deltasine]]