Difference between revisions of "Format notes"
From timescalewiki
(→General format for time scale pages) |
|||
Line 111: | Line 111: | ||
=General format for time scale pages= | =General format for time scale pages= | ||
{| class="wikitable" | {| class="wikitable" | ||
− | |+$\mathbb{T}= | + | |+$\mathbb{T}=$THETIMESCALE |
|- | |- | ||
|[[Forward jump]]: | |[[Forward jump]]: | ||
− | |$\sigma(t)= | + | |$\sigma(t)=$ |
+ | |[[Derivation of forward jump for T=THETIMESCALE|derivation]] | ||
|- | |- | ||
|[[Forward graininess]]: | |[[Forward graininess]]: | ||
− | |$\mu(t)= | + | |$\mu(t)=$ |
+ | |[[Derivation of forward graininess for T=THETIMESCALE|derivation]] | ||
|- | |- | ||
|[[Backward jump]]: | |[[Backward jump]]: | ||
− | |$\rho(t)= | + | |$\rho(t)=$ |
+ | |[[Derivation of backward jump for T=THETIMESCALE|derivation]] | ||
|- | |- | ||
|[[Backward graininess]]: | |[[Backward graininess]]: | ||
− | |$\nu(t)= | + | |$\nu(t)=$ |
+ | |[[Derivation of backward graininess for T=THETIMESCALE|derivation]] | ||
|- | |- | ||
|[[Delta derivative | $\Delta$-derivative]] | |[[Delta derivative | $\Delta$-derivative]] | ||
− | |$f^{\Delta}(t)= | + | |$f^{\Delta}(t)=$ |
+ | |[[Derivation of delta derivative for T=THETIMESCALE|derivation]] | ||
|- | |- | ||
|[[Nabla derivative | $\nabla$-derivative]] | |[[Nabla derivative | $\nabla$-derivative]] | ||
− | |$f^{\nabla}(t) = | + | |$f^{\nabla}(t)=$ |
+ | |[[Derivation of nabla derivative for T=THETIMESCALE|derivation]] | ||
|- | |- | ||
|[[Delta integral | $\Delta$-integral]] | |[[Delta integral | $\Delta$-integral]] | ||
− | |$\displaystyle\int_s^t f(\tau) \Delta \tau = | + | |$\displaystyle\int_s^t f(\tau) \Delta \tau$ |
+ | |[[Derivation of delta integral for T=THETIMESCALE|derivation]] | ||
|- | |- | ||
|[[Nabla derivative | $\nabla$-derivative]] | |[[Nabla derivative | $\nabla$-derivative]] | ||
− | |$\displaystyle\int_s^t f(\tau) \nabla \tau = | + | |$\displaystyle\int_s^t f(\tau) \nabla \tau$ |
+ | |[[Derivation of nabla integral for T=THETIMESCALE|derivation]] | ||
|- | |- | ||
− | |[[Delta | + | |[[Delta hk|$h_k(t,s)$]] |
− | | $ | + | |$h_k(t,s)=$ |
− | + | |[[Derivation of delta hk for T=THETIMESCALE|derivation]] | |
|- | |- | ||
− | |[[Nabla exponential | $\hat{e}_p(t,s) | + | |[[Nabla hk|$\hat{h}_k(t,s)$]] |
− | |$ | + | |$\hat{h}_k(t,s)=$ |
− | + | |[[Derivation of nabla hk for T=THETIMESCALE|derivation]] | |
+ | |- | ||
+ | |[[Delta gk|$g_k(t,s)$]] | ||
+ | |$g_k(t,s)=$ | ||
+ | |[[Derivation of delta gk for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Nabla gk|$\hat{g}_k(t,s)$]] | ||
+ | |$\hat{g}_k(t,s)=$ | ||
+ | |[[Derivation of nabla gk for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Delta exponential | $e_p(t,s)$]] | ||
+ | |$e_p(t,s)=$ | ||
+ | |[[Derivation of delta exponential T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Nabla exponential | $\hat{e}_p(t,s)$]] | ||
+ | |$\hat{e}_p(t,s)=$ | ||
+ | |[[Derivation of nabla exponential T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Gaussian bell]] | ||
+ | |$\mathbf{E}(t)=$ | ||
+ | |[[Derivation of Gaussian bell for T=THETIMESCALE|derivation]] | ||
|- | |- | ||
|[[Delta sine | $\mathrm{sin}_p(t,s)=$]] | |[[Delta sine | $\mathrm{sin}_p(t,s)=$]] | ||
− | |$ | + | |$\sin_p(t,s)=$ |
− | ([[Derivation of sin sub p for T= | + | |[[Derivation of delta sin sub p for T=THETIMESCALE|derivation]] |
+ | |- | ||
+ | |$\mathrm{\sin}_1(t,s)$ | ||
+ | |$\sin_1(t,s)=$ | ||
+ | |[[Derivation of delta sin sub 1 for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Nabla sine|$\widehat{\sin}_p(t,s)$]] | ||
+ | |$\widehat{\sin}_p(t,s)=$ | ||
+ | |[[Derivation of nabla sine sub p for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Delta cosine|$\mathrm{\cos}_p(t,s)$]] | ||
+ | |$\cos_p(t,s)=$ | ||
+ | |[[Derivation of delta cos sub p for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |$\mathrm{\cos}_1(t,s)$ | ||
+ | |$\cos_1(t,s)=$ | ||
+ | |[[Derivation of delta cos sub 1 for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Nabla cosine|$\widehat{\cos}_p(t,s)$]] | ||
+ | |$\widehat{\cos}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cos sub 1 for T=THETIMESCALE|derivation]] | ||
|- | |- | ||
− | |$\ | + | |[[Delta sinh|$\sinh_p(t,s)$]] |
− | |$ | + | |$\sinh_p(t,s)=$ |
− | + | |[[Derivation of delta sinh sub p for T=THETIMESCALE|derivation]] | |
|- | |- | ||
− | |$\ | + | |[[Nabla sinh|$\widehat{\sinh}_p(t,s)$]] |
− | |$ | + | |$\widehat{\sinh}_p(t,s)=$ |
− | + | |[[Derivation of nabla sinh sub p for T=THETIMESCALE|derivation]] | |
|- | |- | ||
− | |$\ | + | |[[Delta cosh|$\cosh_p(t,s)$]] |
− | |$ | + | |$\cosh_p(t,s)=$ |
− | + | |[[Derivation of delta cosh sub p for T=THETIMESCALE|derivation]] | |
|- | |- | ||
− | |[[ | + | |[[Nabla cosh|$\widehat{\cosh}_p(t,s)$]] |
+ | |$\widehat{\cosh}_p(t,s)=$ | ||
+ | |[[Derivation of nabla cosh sub p for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Gamma function]] | ||
+ | |$\Gamma_{THETIMESCALESYMBOL}(x,s)=$ | ||
+ | |[[Derivation of gamma function for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Euler-Cauchy logarithm]] | ||
+ | | | ||
+ | |[[Derivation of Euler-Cauchy logarithm for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Bohner logarithm]] | ||
+ | | | ||
+ | |[[Derivation of the Bohner logarithm for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Jackson logarithm]] | ||
+ | | | ||
+ | |[[Derivation of the Jackson logarithm for T=THETIMESCALE|derivation]] | ||
+ | |- | ||
+ | |[[Mozyrska-Torres logarithm]] | ||
| | | | ||
+ | |[[Derivation of the Mozyrska-Torres logarithm for T=THETIMESCALE|derivation]] | ||
|- | |- | ||
|[[Laplace transform]] | |[[Laplace transform]] | ||
− | |$\mathscr{L}_{ | + | |$\mathscr{L}_{THETIMESCALESYMBOL}\{f\}(z;s)=$ |
+ | |[[Derivation of Laplace transform for T=THETIMESCALE|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Hilger circle]] |
− | | | + | | |
+ | |[[Derivation of Hilger circle for T=THETIMESCALE|derivation]] | ||
|- | |- | ||
|} | |} |
Revision as of 00:09, 22 May 2015
This is a list of common code templates and styles we use at timescalewiki.
Contents
Theorem/proof box template
The code
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>THEOREM/LEMMA/PROPOSITION:</strong> STATEMENT OF THEOREM <div class="mw-collapsible-content"> <strong>Proof:</strong> proof goes here █ </div> </div>
creates
THEOREM/LEMMA/PROPOSITION: STATEMENT OF THEOREM
Proof: proof goes here █
Generic list of time scales
The code
{| class="wikitable" |+Time Scale foo Functions |- |$\mathbb{T}$ | |- |[[Real_numbers | $\mathbb{R}$]] |$foo(t)= $ |- |[[Integers | $\mathbb{Z}$]] |$foo(t) = $ |- |[[Multiples_of_integers | $h\mathbb{Z}$]] | $foo(t) = $ |- | [[Square_integers | $\mathbb{Z}^2$]] | $foo(t) = $ |- |[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]] | $foo(t) = $ |- |[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]] | $foo(t) =$ |- |[[Harmonic_numbers | $\mathbb{H}$]] |$foo(t) = $ |}
generates
$\mathbb{T}$ | |
$\mathbb{R}$ | $foo(t)= $ |
$\mathbb{Z}$ | $foo(t) = $ |
$h\mathbb{Z}$ | $foo(t) = $ |
$\mathbb{Z}^2$ | $foo(t) = $ |
$\overline{q^{\mathbb{Z}}}, q > 1$ | $foo(t) = $ |
$\overline{q^{\mathbb{Z}}}, q < 1$ | $foo(t) =$ |
$\mathbb{H}$ | $foo(t) = $ |
BiBTeX
Place all references at the bottom of the document below a
=References=
inside of
<bibtex>....</bibtex>
tags. Use the following code as a template:
<div id="deots"></div><bibtex> @inproceedings{MR1843232, title="Dynamic equations on time scales", author="Bohner, Martin and Peterson, Allan", booktitle="Birkhäuser Boston, Inc., Boston, MA", year="2001", doi="10.1007/978-1-4612-0201-1", url="http://dx.doi.org/10.1007/978-1-4612-0201-1" } </bibtex>
creates
<bibtex>@inproceedings{deots, title="Dynamic equations on time scales", author="Bohner, Martin and Peterson, Allan", booktitle="Birkhäuser Boston, Inc., Boston, MA", year="2001", doi="10.1007/978-1-4612-0201-1", url="http://dx.doi.org/10.1007/978-1-4612-0201-1" }
</bibtex>
We use the code
<sup>[[#***ABC*** | pp.##]]</sup>
to create a link in the main text that looks like pp.##
which links to the reference next to<div id="***ABC***">