Difference between revisions of "Real numbers"
From timescalewiki
Line 59: | Line 59: | ||
|$\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$ | |$\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$ | ||
|[[Derivation of nabla exponential T=R|derivation]] | |[[Derivation of nabla exponential T=R|derivation]] | ||
+ | |- | ||
+ | [[Gaussian bell]] | ||
+ | | | ||
+ | |[[Derivation of Gaussian bell for T=R|derivation]] | ||
|- | |- | ||
|[[Delta sine | $\mathrm{sin}_p(t,s)=$]] | |[[Delta sine | $\mathrm{sin}_p(t,s)=$]] | ||
Line 100: | Line 104: | ||
|[[Derivation of nabla cosh sub p for T=R|derivation]] | |[[Derivation of nabla cosh sub p for T=R|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Gamma function]] |
+ | |$\Gamma_{\mathbb{R}}(x,s)=\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$ | ||
+ | |[[Derivation of gamma function for T=R|derivation]] | ||
+ | |- | ||
+ | |[[Euler-Cauchy logarithm]] | ||
+ | | | ||
+ | |[[Derivation of Euler-Cauchy logarithm for T=R|derivation]] | ||
+ | |- | ||
+ | |[[Bohner logarithm]] | ||
+ | | | ||
+ | |[[Derivation of the Bohner logarithm for T=R|derivation]] | ||
+ | |- | ||
+ | |[[Jackson logarithm]] | ||
+ | | | ||
+ | |[[Derivation of the Jackson logarithm for T=R|derivation]] | ||
+ | |- | ||
+ | |[[Mozyrska-Torres logarithm]] | ||
| | | | ||
− | |[[Derivation of | + | |[[Derivation of the Mozyrska-Torres logarithm for T=R|derivation]] |
|- | |- | ||
|[[Laplace transform]] | |[[Laplace transform]] | ||
Line 108: | Line 128: | ||
|[[Derivation of Laplace transform for T=R|derivation]] | |[[Derivation of Laplace transform for T=R|derivation]] | ||
|- | |- | ||
− | |[[ | + | |[[Hilger circle]] |
− | | | + | | |
− | |[[Derivation of | + | |[[Derivation of Hilger circle for T=R|derivation]] |
|- | |- | ||
|} | |} |
Revision as of 23:54, 21 May 2015
The set $\mathbb{R}$ of real numbers is a time scale. In this time scale, all derivatives reduce to the clasical derivative and the integrals reduce to the Riemann integral.
Forward jump: | $\sigma(t)=t$ | derivation |
Forward graininess: | $\mu(t)=0$ | derivation |
Backward jump: | $\rho(t)=t$ | derivation |
Backward graininess: | $\nu(t)=0$ | derivation |
$\Delta$-derivative | $f^{\Delta}(t)=\displaystyle\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}=f'(t)$ | derivation |
$\nabla$-derivative | $f^{\nabla}(t) =\displaystyle\lim_{h \rightarrow 0} \dfrac{f(t)-f(t-h)}{h}= f'(t)$ | derivation |
$\Delta$-integral | $\displaystyle\int_s^t f(\tau) \Delta \tau = \int_s^t f(\tau) d\tau$ | derivation |
$\nabla$-derivative | $\displaystyle\int_s^t f(\tau) \nabla \tau = \int_s^t f(\tau) d\tau$ | derivation |
$h_k(t,s)$ | derivation | |
$\hat{h}_k(t,s)$ | derivation | |
$g_k(t,s)$ | derivation | |
$\hat{g}_k(t,s)$ | derivation | |
$e_p(t,s)=$ | $\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$ | derivation |
$\hat{e}_p(t,s)=$ | $\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$ | derivation |
derivation | ||
$\mathrm{sin}_p(t,s)=$ | $\sin\left( \displaystyle\int_s^t p(\tau) d\tau \right)$ | derivation |
$\mathrm{\sin}_1(t,0)$ | $\sin(t)$ | derivation |
$\widehat{\sin}_p(t,s)$ | derivation | |
$\mathrm{\cos}_p(t,s)$ | $\cos \left( \displaystyle\int_s^t p(\tau) d\tau \right)$ | derivation |
$\mathrm{\cos}_1(t,0)$ | $\cos(t)$ | derivation |
$\widehat{\cos}_p(t,s)$ | derivation | |
$\sinh_p(t,s)$ | derivation | |
$\widehat{\sinh}_p(t,s)$ | derivation | |
$\cosh_p(t,s)$ | derivation | |
$\widehat{\cosh}_p(t,s)$ | derivation | |
Gamma function | $\Gamma_{\mathbb{R}}(x,s)=\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$ | derivation |
Euler-Cauchy logarithm | derivation | |
Bohner logarithm | derivation | |
Jackson logarithm | derivation | |
Mozyrska-Torres logarithm | derivation | |
Laplace transform | $\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_0^{\infty} f(\tau) e^{-z\tau} d\tau$ | derivation |
Hilger circle | derivation |