Difference between revisions of "Unilateral Laplace transform"

From timescalewiki
Jump to: navigation, search
(Properties of Laplace Transforms)
Line 9: Line 9:
  
  
==Convergence==
 
We define the minimal graininess function
 
$$\mu_*(s)=\inf_{\tau \in [s,\infty) \cap \mathbb{T}} \mu(\tau).$$
 
Let $h\geq 0$. We also define the Hilger real part of $z \in \mathbb{C}$ by
 
$$\mathrm{Re}_h(z)=\dfrac{1}{h}(|1+hz|-1)$$
 
and the Hilger imaginary part of $z \in \mathbb{C}$ by
 
$$\mathrm{Re}_h(z)=\mathrm{Arg}(1+hz),$$
 
where $\mathrm{Arg}$ denotes the principal argument of $1+hz$. We let
 
$$\mathbb{C}_h = \left\{ z \in \mathbb{C} \colon z \neq -\dfrac{1}{h} \right\}.$$
 
Finally given some $\lambda \in \mathbb{R}$ we define
 
$$\mathbb{C}_h(\lambda) = \left\{ z \in \mathbb{C}_h \colon \mathrm{Re}_h(z) > \lambda \right\}.$$
 
  
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem (Absolute convergence):</strong> Let $f \in C_{\mathrm{rd}}([s,\infty) \cap \mathbb{T},\mathbb{C})$ be of [[exponential_order | exponential order $\alpha$]]. Then $\mathscr{L}\{f\}(\cdot;s)$ exists on $\mathbb{C}_{\mu_*(s)}(\alpha)$ and converges absolutely.
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem (Uniform convergence):</strong> Let $f \in C_{\mathrm{rd}}([s,\infty)\cap\mathbb{T},\mathbb{C})$ be of exponential order $\alpha$. Then the Laplace transform $\mathscr{L}\{f\}$ converges uniformly in the half-plane $C_{\mu_*(s)}(\beta)$ for any $\beta > \alpha$.
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
=Table of Laplace transforms=
 
=Table of Laplace transforms=

Revision as of 15:12, 21 January 2023

If $\mathbb{T}$ is a time scale, $s \in \mathbb{T}$, and $f$ is rd-continuous, then we define the unilateral Laplace transform of $f$ about $s$ by the formula $$\mathscr{L}_{\mathbb{T}}\{f\}(z;s) = \displaystyle\int_s^{\infty} f(t) e_{\ominus z}(\sigma(t),s) \Delta t,$$ for all $z$ for which the integral converges, where $\displaystyle\int$ denotes the delta integral, $e_{\ominus z}$ denotes a delta exponential whose subscript is the forward circle minus of the constant $z$, and $\sigma$ is the forward jump.

Properties of Laplace Transforms

Unilateral Laplace transform is a linear operator
Unilateral Laplace transform of delta derivative



Table of Laplace transforms

Formula for unilateral Laplace transform
$\mathbb{T}=$ Unilateral Laplace transform
$\mathbb{R}$ $\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_s^{\infty} f(\tau) e^{-z\tau} \mathrm{d}\tau$
$\mathbb{Z}$
$h\mathbb{Z}$
$\mathbb{Z}^2$
$\overline{q^{\mathbb{Z}}}, q > 1$
$\overline{q^{\mathbb{Z}}}, q < 1$
$\mathbb{H}$
Laplace Transforms of special functions
$f(t;s)$ $\mathscr{L}\{f(\cdot;s)\}(z)$
$e_{\alpha}(t;s)$ $\dfrac{1}{z-\alpha}$
$h_n(t;s)$ $\dfrac{1}{z^{n+1}}$
$\sinh_{\alpha}(t;s)$ $\dfrac{\alpha}{z^2-\alpha^2}$
$\cosh_{\alpha}(t;s)$ $\dfrac{z}{z^2-\alpha^2}$
$\sin_{\alpha}(t;s)$ $\dfrac{\alpha}{z^2+\alpha^2}$
$\cos_{\alpha}(t;s)$ $\dfrac{z}{z^2+\alpha^2}$

See also

Bilateral Laplace transform
Unilateral convolution

References