# Format notes

This is a list of common code templates and styles we use at timescalewiki.

# Theorem/proof box template

The code

<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>THEOREM/LEMMA/PROPOSITION:</strong> STATEMENT OF THEOREM
<div class="mw-collapsible-content">
<strong>Proof:</strong> proof goes here █
</div>
</div>

creates

THEOREM/LEMMA/PROPOSITION: STATEMENT OF THEOREM

Proof: proof goes here █

# Galleries

Put images into galleries. Thumbnails and frames break the theorem/proof box template. The code

<div align="center">
<gallery>
File:Arccos.png|Graph of $\mathrm{arccos}$ on $[-1,1]$.
File:Complex arccos.jpg|[[Domain coloring]] of [[analytic continuation]].
</gallery>
</div>

# Generic list of time scales

The code

{| class="wikitable"
|+Time Scale foo Functions
|-
|$\mathbb{T}$
|
|-
|[[Real_numbers | $\mathbb{R}$]]
|$foo(t)=$
|-
|[[Integers | $\mathbb{Z}$]]
|$foo(t) =$
|-
|[[Multiples_of_integers | $h\mathbb{Z}$]]
| $foo(t) =$
|-
| [[Square_integers | $\mathbb{Z}^2$]]
| $foo(t) =$
|-
|[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]]
| $foo(t) =$
|-
|[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]]
| $foo(t) =$
|-
|[[Harmonic_numbers | $\mathbb{H}$]]
|$foo(t) =$
|}

generates

 $\mathbb{T}$ $\mathbb{R}$ $foo(t)=$ $\mathbb{Z}$ $foo(t) =$ $h\mathbb{Z}$ $foo(t) =$ $\mathbb{Z}^2$ $foo(t) =$ $\overline{q^{\mathbb{Z}}}, q > 1$ $foo(t) =$ $\overline{q^{\mathbb{Z}}}, q < 1$ $foo(t) =$ $\mathbb{H}$ $foo(t) =$

# General format for time scale pages

 Forward jump: $\sigma(t)=$ derivation Forward graininess: $\mu(t)=$ derivation Backward jump: $\rho(t)=$ derivation Backward graininess: $\nu(t)=$ derivation $\Delta$-derivative $f^{\Delta}(t)=$ derivation $\nabla$-derivative $f^{\nabla}(t)=$ derivation $\Delta$-integral $\displaystyle\int_s^t f(\tau) \Delta \tau=$ derivation $\nabla$-integral $\displaystyle\int_s^t f(\tau) \nabla \tau=$ derivation $h_k(t,s)$ $h_k(t,s)=$ derivation $\hat{h}_k(t,s)$ $\hat{h}_k(t,s)=$ derivation $g_k(t,s)$ $g_k(t,s)=$ derivation $\hat{g}_k(t,s)$ $\hat{g}_k(t,s)=$ derivation $e_p(t,s)$ $e_p(t,s)=$ derivation $\hat{e}_p(t,s)$ $\hat{e}_p(t,s)=$ derivation Gaussian bell $\mathbf{E}(t)=$ derivation $\mathrm{sin}_p(t,s)=$ $\sin_p(t,s)=$ derivation $\mathrm{\sin}_1(t,s)$ $\sin_1(t,s)=$ derivation $\widehat{\sin}_p(t,s)$ $\widehat{\sin}_p(t,s)=$ derivation $\mathrm{\cos}_p(t,s)$ $\cos_p(t,s)=$ derivation $\mathrm{\cos}_1(t,s)$ $\cos_1(t,s)=$ derivation $\widehat{\cos}_p(t,s)$ $\widehat{\cos}_p(t,s)=$ derivation $\sinh_p(t,s)$ $\sinh_p(t,s)=$ derivation $\widehat{\sinh}_p(t,s)$ $\widehat{\sinh}_p(t,s)=$ derivation $\cosh_p(t,s)$ $\cosh_p(t,s)=$ derivation $\widehat{\cosh}_p(t,s)$ $\widehat{\cosh}_p(t,s)=$ derivation Gamma function $\Gamma_{TIMESCALESYMBOL}(x,s)=$ derivation Euler-Cauchy logarithm $L(t,s)=$ derivation Bohner logarithm $L_p(t,s)=$ derivation Jackson logarithm $\log_{TIMESCALESYMBOL} g(t)=$ derivation Mozyrska-Torres logarithm $L_{TIMESCALESYMBOL}(t)=$ derivation Laplace transform $\mathscr{L}_{TIMESCALESYMBOL}\{f\}(z;s)=$ derivation Hilger circle derivation

# Categories

For special functions:

[[Category:plot]]
[[Category:deltaexponential]]
[[Category:timescale:integers]]
[[Category:specialfunction]]


For glyphs:

[[Category:deltasineglyph]]
[[Category:glyph]]
[[Category:timescale:integers]]
[[Category:deltasine]]