Difference between revisions of "Shifting problem"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $\mathbb{T}$ be a time scale, $t_0 \in \mathbb{T}$, and $f \colon [t_0,\infty) \cap \mathbb{T} \rightarrow \mathbb{C}$. The shifting problem is the following partial dyn...")
 
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
Let $\mathbb{T}$ be a time scale, $t_0 \in \mathbb{T}$, and $f \colon [t_0,\infty) \cap \mathbb{T} \rightarrow \mathbb{C}$. The shifting problem is the following [[partial dynamic equation]] for $t,s \in \mathbb{T}$:
+
__NOTOC__
 +
Let $\mathbb{T}$ be a time scale with $\sup \mathbb{T}=\infty$, $t_0 \in \mathbb{T}$, and $f \colon [t_0,\infty) \cap \mathbb{T} \rightarrow \mathbb{C}$. The shifting problem is the following [[partial dynamic equation]] for $t,s \in \mathbb{T}$:
 
$$\left\{ \begin{array}{ll}
 
$$\left\{ \begin{array}{ll}
 
\dfrac{\partial \hat{f}}{\Delta t}(t,\sigma(s))=-\dfrac{\partial \hat{f}}{\Delta s}(t,s)& ; t \geq s \geq t_0, \\
 
\dfrac{\partial \hat{f}}{\Delta t}(t,\sigma(s))=-\dfrac{\partial \hat{f}}{\Delta s}(t,s)& ; t \geq s \geq t_0, \\
Line 5: Line 6:
 
\end{array} \right.$$
 
\end{array} \right.$$
 
The solution $\hat{f}$ of the shifting problem is called the shift of $f$ (also called the delay of $f$).
 
The solution $\hat{f}$ of the shifting problem is called the shift of $f$ (also called the delay of $f$).
 +
 +
=Properties=
 +
[[Delta integral of certain shift of f is delta integral of f]]<br />
 +
[[Delta partial derivative of shift along diagonal]]<br />
 +
 +
=Examples=
 +
<center>
 +
{| class="wikitable"
 +
|+Time Scales Shift
 +
|-
 +
| $\mathbb{T}$
 +
| $\hat{f}(t,s)=$
 +
|-
 +
|[[Real_numbers | $\mathbb{R}$]]
 +
|$f(t-s)$
 +
|-
 +
|[[Integers | $\mathbb{Z}$]]
 +
|$f(t-s+t_0)$
 +
|-
 +
|[[Multiples_of_integers | $h\mathbb{Z}$]]
 +
|
 +
|-
 +
| [[Square_integers | $\mathbb{Z}^2$]]
 +
|
 +
|-
 +
|[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]]
 +
|
 +
|-
 +
|[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]]
 +
|
 +
|-
 +
|[[Harmonic_numbers | $\mathbb{H}$]]
 +
|
 +
|}
 +
</center>
 +
 +
=See also=
 +
[[Unilateral convolution]] <br />
 +
[[Unilateral Laplace transform]]<br />
 +
 +
=References=
 +
*{{PaperReference|The convolution on time scales|2007|Martin Bohner|author2=Gusein Sh. Guseinov|prev=|next=}}: Definition 2.1

Latest revision as of 14:51, 21 January 2023

Let $\mathbb{T}$ be a time scale with $\sup \mathbb{T}=\infty$, $t_0 \in \mathbb{T}$, and $f \colon [t_0,\infty) \cap \mathbb{T} \rightarrow \mathbb{C}$. The shifting problem is the following partial dynamic equation for $t,s \in \mathbb{T}$: $$\left\{ \begin{array}{ll} \dfrac{\partial \hat{f}}{\Delta t}(t,\sigma(s))=-\dfrac{\partial \hat{f}}{\Delta s}(t,s)& ; t \geq s \geq t_0, \\ \hat{f}(t,t_0)=f(t)&; t \geq t_0. \end{array} \right.$$ The solution $\hat{f}$ of the shifting problem is called the shift of $f$ (also called the delay of $f$).

Properties

Delta integral of certain shift of f is delta integral of f
Delta partial derivative of shift along diagonal

Examples

Time Scales Shift
$\mathbb{T}$ $\hat{f}(t,s)=$
$\mathbb{R}$ $f(t-s)$
$\mathbb{Z}$ $f(t-s+t_0)$
$h\mathbb{Z}$
$\mathbb{Z}^2$
$\overline{q^{\mathbb{Z}}}, q > 1$
$\overline{q^{\mathbb{Z}}}, q < 1$
$\mathbb{H}$

See also

Unilateral convolution
Unilateral Laplace transform

References