Difference between revisions of "Real numbers"

From timescalewiki
Jump to: navigation, search
Line 3: Line 3:
 
{| class="wikitable"
 
{| class="wikitable"
 
|+$\mathbb{T}=\mathbb{R}$
 
|+$\mathbb{T}=\mathbb{R}$
|-
 
|Generic element $t \in \mathbb{T}$:
 
|$t=t$
 
 
|-
 
|-
 
|[[Forward jump]]:
 
|[[Forward jump]]:
 
|$\sigma(t)=t$
 
|$\sigma(t)=t$
 
|-
 
|-
|[[Graininess]]:
+
|[[Forward graininess]]:
 
|$\mu(t)=0$
 
|$\mu(t)=0$
 
|-
 
|-
Line 31: Line 28:
 
|$$\int_s^t f(\tau) \nabla \tau = \int_s^t f(\tau) d\tau$$
 
|$$\int_s^t f(\tau) \nabla \tau = \int_s^t f(\tau) d\tau$$
 
|-
 
|-
|[[Delta exponential | $\Delta$-exponential]]
+
|[[Delta exponential | $e_p(t,s)=$]]  
| {{:Derivation of delta exponential T=R}}
+
| $$\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$$
 +
([[Derivation of delta exponential T=R|derivation]])
 
|-
 
|-
|[[Nabla exponential | $\nabla$-exponential]]
+
|[[Nabla exponential | $\hat{e}_p(t,s)=$]]
|$\hat{e}_p(t,s)=\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$
+
|$$\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$$
 +
([[Derivation of nabla exponential T=R|derivation]])
 
|-
 
|-
|[[Trig functions | $\mathrm{sin}_p(t,s)$]]
+
|[[Delta sine | $\mathrm{sin}_p(t,s)=$]]
 +
|$$\sin\left( \displaystyle\int_s^t p(\tau) d\tau \right)$$
 +
([[Derivation of sin sub p for T=R|derivation]])
 
|-
 
|-
 
|$\mathrm{\sin}_1(t,0)$
 
|$\mathrm{\sin}_1(t,0)$
|$\sin(t)$
+
|$$\sin(t)$$
 +
([[Derivation of sin sub 1 for T=R|derivation]])
 
|-
 
|-
 
|$\mathrm{\cos}_p(t,s)$
 
|$\mathrm{\cos}_p(t,s)$
|$\cos \left( \displaystyle\int_s^t p(\tau) d\tau \right)$
+
|$$\cos \left( \displaystyle\int_s^t p(\tau) d\tau \right)$$
 +
([[Derivation of cos sub p for T=R|derivation]])
 
|-
 
|-
 
|$\mathrm{\cos}_1(t,0)$
 
|$\mathrm{\cos}_1(t,0)$
 
|$\cos(t)$
 
|$\cos(t)$
 +
([[Derivation of cos sub 1 for T=R|derivation]])
 
|-
 
|-
 
|[[Hilger circle]]  
 
|[[Hilger circle]]  
Line 52: Line 56:
 
|-
 
|-
 
|[[Laplace transform]]
 
|[[Laplace transform]]
|$\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_0^{\infty} f(\tau) e^{-z\tau} d\tau$
+
|$$\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_0^{\infty} f(\tau) e^{-z\tau} d\tau$$
 
|-
 
|-
 
|[[Gamma function]]
 
|[[Gamma function]]
|
+
|$$\Gamma_{\mathbb{R}}(x,s)=\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$$
 
|-
 
|-
 
|}
 
|}

Revision as of 19:26, 29 April 2015

The set $\mathbb{R}$ of real numbers is a time scale. In this time scale, all derivatives reduce to the clasical derivative and the integrals reduce to the Riemann integral.

$\mathbb{T}=\mathbb{R}$
Forward jump: $\sigma(t)=t$
Forward graininess: $\mu(t)=0$
Backward jump: $\rho(t)=t$
Backward graininess: $\nu(t)=0$
$\Delta$-derivative $$f^{\Delta}(t)=\lim_{h\rightarrow 0} \dfrac{f(t+h)-f(t)}{h}=f'(t)$$
$\nabla$-derivative $$f^{\nabla}(t) =\lim_{h \rightarrow 0} \dfrac{f(t)-f(t-h)}{h}= f'(t)$$
$\Delta$-integral $$\int_s^t f(\tau) \Delta \tau = \int_s^t f(\tau) d\tau$$
$\nabla$-derivative $$\int_s^t f(\tau) \nabla \tau = \int_s^t f(\tau) d\tau$$
$e_p(t,s)=$ $$\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$$

(derivation)

$\hat{e}_p(t,s)=$ $$\exp \left( \displaystyle\int_s^t p(\tau) d\tau \right)$$

(derivation)

$\mathrm{sin}_p(t,s)=$ $$\sin\left( \displaystyle\int_s^t p(\tau) d\tau \right)$$

(derivation)

$\mathrm{\sin}_1(t,0)$ $$\sin(t)$$

(derivation)

$\mathrm{\cos}_p(t,s)$ $$\cos \left( \displaystyle\int_s^t p(\tau) d\tau \right)$$

(derivation)

$\mathrm{\cos}_1(t,0)$ $\cos(t)$

(derivation)

Hilger circle
Laplace transform $$\mathscr{L}_{\mathbb{R}}\{f\}(z;s)=\displaystyle\int_0^{\infty} f(\tau) e^{-z\tau} d\tau$$
Gamma function $$\Gamma_{\mathbb{R}}(x,s)=\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$$