Difference between revisions of "Multiples of integers"

From timescalewiki
Jump to: navigation, search
Line 15: Line 15:
 
|[[Delta_derivative | $\Delta$-derivative:]]
 
|[[Delta_derivative | $\Delta$-derivative:]]
 
|$f^{\Delta}(t)=\dfrac{f(t+h)-f(t)}{h}$
 
|$f^{\Delta}(t)=\dfrac{f(t+h)-f(t)}{h}$
 +
|-
 +
|[[Nabla derivative | $\nabla$-derivative:]]
 +
|$f^{\nabla}(t) = \dfrac{f(t)-f(t-h)}{h}$
 
|-
 
|-
 
|[[Delta_integral | $\Delta$-integral:]]
 
|[[Delta_integral | $\Delta$-integral:]]
Line 22: Line 25:
 
|$h_k(t,s) = \dfrac{1}{k!} \displaystyle\prod_{\ell=0}^{k-1}(t-\ell h-s)$
 
|$h_k(t,s) = \dfrac{1}{k!} \displaystyle\prod_{\ell=0}^{k-1}(t-\ell h-s)$
 
|-
 
|-
|[[Exponential_functions | Exponential function]]:
+
|[[Delta exponential | $\Delta$-Exponential function]]:
 
| $\begin{array}{ll}
 
| $\begin{array}{ll}
 
e_p(t,s) &= \exp \left( \displaystyle\int_{s}^{t} \dfrac{1}{\mu(\tau)} \log(1 + hp(\tau)) \Delta \tau \right) \\
 
e_p(t,s) &= \exp \left( \displaystyle\int_{s}^{t} \dfrac{1}{\mu(\tau)} \log(1 + hp(\tau)) \Delta \tau \right) \\
Line 28: Line 31:
 
&= \displaystyle\prod_{k=\frac{s}{h}}^{\frac{t}{h}-1} \left( 1+hp(hk) \right) \\
 
&= \displaystyle\prod_{k=\frac{s}{h}}^{\frac{t}{h}-1} \left( 1+hp(hk) \right) \\
 
\end{array}$
 
\end{array}$
 +
|-
 +
| [[Nabla exponential | $\nabla$-Exponential function]]:
 +
| $\hat{e}_p(t,s)=\left\{ \begin{array}{ll}
 +
\displaystyle\prod_{k=\frac{s}{h}}^{\frac{t}{h}-1} \dfrac{1}{1-hp(hk)} &; t \gt s \\
 +
1 &; t=s \\
 +
\prod_{k=\frac{t}{h}}^{\frac{s}{h}-1} (1-hp(hk)) &; t \lt s
 +
\end{array} \right.$
 
|-
 
|-
 
|[[Hilger circle]]:
 
|[[Hilger circle]]:

Revision as of 17:58, 1 March 2015

The set $h\mathbb{Z}=\{\ldots,-2h,-h,0,h,2h,\ldots\}$ of multiples of the integers is a time scale.

$\mathbb{T}=h\mathbb{Z}$
Generic element $t\in \mathbb{T}$: For some $n \in \mathbb{Z}, t =hn$
Jump operator: $\sigma(t)=t+h$
Graininess operator: $\mu(t)=h$
$\Delta$-derivative: $f^{\Delta}(t)=\dfrac{f(t+h)-f(t)}{h}$
$\nabla$-derivative: $f^{\nabla}(t) = \dfrac{f(t)-f(t-h)}{h}$
$\Delta$-integral: $\displaystyle\int_s^t f(\tau) \Delta \tau = \displaystyle\sum_{k=\frac{s}{h}}^{\frac{t}{h}-1} hf(hk)$
$h_k(t,s)$ $h_k(t,s) = \dfrac{1}{k!} \displaystyle\prod_{\ell=0}^{k-1}(t-\ell h-s)$
$\Delta$-Exponential function: $\begin{array}{ll} e_p(t,s) &= \exp \left( \displaystyle\int_{s}^{t} \dfrac{1}{\mu(\tau)} \log(1 + hp(\tau)) \Delta \tau \right) \\ &= \exp \left( \displaystyle\sum_{k=\frac{s}{h}}^{\frac{t}{h}-1} \log(1+hp(hk)) \right) \\ &= \displaystyle\prod_{k=\frac{s}{h}}^{\frac{t}{h}-1} \left( 1+hp(hk) \right) \\ \end{array}$
$\nabla$-Exponential function: $\hat{e}_p(t,s)=\left\{ \begin{array}{ll} \displaystyle\prod_{k=\frac{s}{h}}^{\frac{t}{h}-1} \dfrac{1}{1-hp(hk)} &; t \gt s \\ 1 &; t=s \\ \prod_{k=\frac{t}{h}}^{\frac{s}{h}-1} (1-hp(hk)) &; t \lt s \end{array} \right.$
Hilger circle: Hilgercircle,T=hZ.png
Gamma function: $\Gamma_{h\mathbb{Z}}(t;s)=h\displaystyle\sum_{k=0}^{\infty} \left( \displaystyle\prod_{j=s}^{k-1} \dfrac{j+x}{j+1} \right) \dfrac{1}{(1+h)^{k+1}}$

References

Cauchy Functions and Taylor's Formula for Time Scales T