Difference between revisions of "Gamma function"

From timescalewiki
Jump to: navigation, search
(Properties of gamma functions)
(Properties of gamma functions)
Line 11: Line 11:
  
  
and the bracket factorial
 
$$[n]_{\mathbb{T}}! = \left\{ \begin{array}{ll}
 
1&; n=0 \\
 
\displaystyle\prod_{j=1}^n [j]_{\mathbb{T}} &; n=1,2,\ldots
 
\end{array} \right.$$
 
  
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">

Revision as of 18:03, 15 January 2023

Let $\mathbb{T}$ be a time scale and define $p_f(t,s)=e_{\frac{f}{\mathrm{id}}}(t,s)$, where $\mathrm{id}$ denotes the identity map $\mathrm{id} \colon \mathbb{T} \rightarrow \mathbb{T}$ and $e_{\frac{f}{\mathrm{id}}}$ denotes the delta exponential. With these definitions, we define the gamma operator $$\Gamma_{\mathbb{T}}(f;s)=\mathscr{L}_{\mathbb{T}}\{p_{f \boxminus_{\mu} 1}(\cdot,s)\}(1)=\displaystyle\int_0^{\infty} p_{f \boxminus_{\mu}1}(\eta,s) e_{\ominus_{\mu}1}^{\sigma}(\eta,0) \Delta \eta,$$ where $\mathscr{L}_{\mathbb{T}}$ denotes the Laplace transform, $\boxminus_{\mu}$ denotes forward box minus, $\ominus_{\mu}$ denotes forward circle minus, and $\sigma$ denotes the forward jump.

Properties of gamma functions

Convergence of gamma function at positive values
Gamma function diverges at zero
Gamma function diverges at infinity
Gamma function equals one at one
Gamma function of x boxplus one


Theorem: Let $n \in \mathbb{Z}^+$ and assume that $[k]_{\mathbb{T}}$ is a constant function on $\mathbb{T}^+$ for all $k\in[1,n]\bigcap \mathbb{Z}^+$. Then $$\Gamma_{\mathbb{T}}\left( [n]_{\mathbb{T}};s \right) = \dfrac{[n-1]_{\mathbb{T}}!}{s^{n-1}}.$$

Proof:

Examples of gamma functions

We write formulas for gamma functions defined for $x \in \mathbb{R}^+$ and $s \in \mathbb{T}^+$.

$\mathbb{T}=$ $\Gamma_{\mathbb{T}}(x;s)=$
$\mathbb{R}$ $\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$
$h\mathbb{Z};h>0$ $h \displaystyle\sum_{k=0}^{\infty} \left( \displaystyle\prod_{j=s}^{k-1} \dfrac{j+x}{j+1} \right) \dfrac{1}{(1+h)^{k+1}}$
$\overline{q^{\mathbb{Z}}}; q>1$ $\dfrac{(q-1)s}{(1+(q-1)x)^{\log_q(s)}} \displaystyle\sum_{k=-\infty}^{\infty} \dfrac{(1+(q-1)x)^k}{\prod_{j=-\infty}^{k} (1+(q-1)q^k)}$

References