Difference between revisions of "Forward circle minus"

From timescalewiki
Jump to: navigation, search
(Created page with "Let $h>0$ and $z_1,z_2 \in \mathbb{C}_h$, the Hilger complex plane. We define the $\ominus_h$ operation by $$\ominus_h z = \dfrac{-z}{1+zh}.$$ =Properties= <div class="to...")
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
Let $h>0$ and $z_1,z_2 \in \mathbb{C}_h$, the [[Hilger complex plane]]. We define the $\ominus_h$ operation by
+
Let $\mathbb{T}$ be a [[time scale]] and let $p,q \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be [[forward regressive function| (forward) regressive functions ]]. We define the (forward) circle minus operation $\ominus_{\mu} \colon \mathbb{T} \rightarrow \mathbb{T}$ by  
$$\ominus_h z = \dfrac{-z}{1+zh}.$$
+
$$\left( \ominus_{\mu} p \right)(t) = \dfrac{-p(t)}{1+p(t)\mu(t)}.$$
 +
Since the set of forward regressive functions [[forward regressive functions form a group|form a group]] $\left(\mathcal{R}(\mathbb{T},\mathbb{C}),\oplus_{\mu} \right)$ under [[circle plus]] with inverse operation  $\ominus_{\mu}$, we define
 +
$$p \ominus_{\mu} q = p \oplus_{\mu} (\ominus_{\mu} q).$$
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
[[Forward regressive functions form a group]]<br />
<strong>Theorem:</strong> The [[circle minus]] $\ominus_h$ is the inverse operation of the [[circle plus]] operation $\oplus_h$. Moreover,
+
[[Circle minus inverse of circle plus]]<br />
$$z \ominus_h w = z \oplus_h (\ominus_h w).$$
+
 
<div class="mw-collapsible-content">
+
=See Also=
<strong>Proof:</strong> █
+
[[Delta exponential]]<br />
</div>
 
</div>
 

Revision as of 15:43, 22 September 2016

Let $\mathbb{T}$ be a time scale and let $p,q \in \mathcal{R}(\mathbb{T},\mathbb{C})$ be (forward) regressive functions . We define the (forward) circle minus operation $\ominus_{\mu} \colon \mathbb{T} \rightarrow \mathbb{T}$ by $$\left( \ominus_{\mu} p \right)(t) = \dfrac{-p(t)}{1+p(t)\mu(t)}.$$ Since the set of forward regressive functions form a group $\left(\mathcal{R}(\mathbb{T},\mathbb{C}),\oplus_{\mu} \right)$ under circle plus with inverse operation $\ominus_{\mu}$, we define $$p \ominus_{\mu} q = p \oplus_{\mu} (\ominus_{\mu} q).$$

Properties

Forward regressive functions form a group
Circle minus inverse of circle plus

See Also

Delta exponential