Difference between revisions of "Derivation of delta sin sub p for T=Z"

From timescalewiki
Jump to: navigation, search
(Created page with "$$\begin{array}{ll} \sin_p(t,s) &= \dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i} \\ &= \dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) - \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2i} \en...")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
$$\begin{array}{ll}
+
Using the properties of [[Delta exponential|$e_p$]], it is clear that $\sin_p(t,s) = \dfrac{1-1}{2i} = 0$. Furthermore if $t>s$, then
\sin_p(t,s) &= \dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i} \\
+
$$\sin_p(t,s) = \dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i} = \dfrac{\displaystyle\prod_{k=s}^{t-1}1+ip(k) - \displaystyle\prod_{k=s}^{t-1}1-ip(k)}{2i}.$$
&= \dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) - \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2i}
+
If $t<s$ then
\end{array}$$
+
$$\sin_p(t,s) = \dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i} = \dfrac{\displaystyle\prod_{k=t}^{s-1} \frac{1}{1+ip(k)} - \displaystyle\prod_{k=t}^{s-1} \frac{1}{1-ip(k)}}{2i}.$$

Latest revision as of 00:46, 22 May 2015

Using the properties of $e_p$, it is clear that $\sin_p(t,s) = \dfrac{1-1}{2i} = 0$. Furthermore if $t>s$, then $$\sin_p(t,s) = \dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i} = \dfrac{\displaystyle\prod_{k=s}^{t-1}1+ip(k) - \displaystyle\prod_{k=s}^{t-1}1-ip(k)}{2i}.$$ If $t<s$ then $$\sin_p(t,s) = \dfrac{e_{ip}(t,s)-e_{-ip}(t,s)}{2i} = \dfrac{\displaystyle\prod_{k=t}^{s-1} \frac{1}{1+ip(k)} - \displaystyle\prod_{k=t}^{s-1} \frac{1}{1-ip(k)}}{2i}.$$