# Difference between revisions of "Delta exponential of Jackson logarithm"

From timescalewiki

Line 7: | Line 7: | ||

==References== | ==References== | ||

− | *{{PaperReference|The time scale logarithm|2008|Billy Jackson|prev=Jackson logarithm of delta exponential|next= | + | *{{PaperReference|The time scale logarithm|2008|Billy Jackson|prev=Jackson logarithm of delta exponential|next=Jackson logarithm of a product}}: Theorem $1.1$, $(1.3)$ |

[[Category:Theorem]] | [[Category:Theorem]] | ||

[[Category:Unproven]] | [[Category:Unproven]] |

## Latest revision as of 17:46, 11 February 2017

## Theorem

Let $\mathbb{T}$ be a time scale. The following formula holds: $$e_{\log_{\mathbb{T}} f}(t,s)=\dfrac{f(t)}{f(s)},$$ where $e_{\cdot}$ denotes the delta exponential and $\log_{\mathbb{T}}$ denotes the Jackson logarithm.

## Proof

## References

- Billy Jackson:
*The time scale logarithm*(2008)... (previous)... (next): Theorem $1.1$, $(1.3)$