# Difference between revisions of "Delta Wirtinger inequality"

Line 1: | Line 1: | ||

+ | __NOTOC__ | ||

==Theorem== | ==Theorem== | ||

Let $M$ be positive and strictly monotone such that $M^{\Delta}$ exists an is [[continuity | rd-continuous]]. Then we have | Let $M$ be positive and strictly monotone such that $M^{\Delta}$ exists an is [[continuity | rd-continuous]]. Then we have |

## Latest revision as of 00:39, 15 September 2016

## Theorem

Let $M$ be positive and strictly monotone such that $M^{\Delta}$ exists an is rd-continuous. Then we have $$\displaystyle\int_a^b |M^{\Delta}(t)|(y^{\sigma}(t))^2 \Delta t \leq \Psi \displaystyle\int_a^b \dfrac{M(t)M^{\sigma}(t)}{|M^{\Delta}(t)|} (y^{\Delta}(t))^2 \Delta t$$ for any $y$ with $y(a)=y(b)=0$ and such that $y^{\Delta}$ exists and is rd-continuous, where $$\Psi = \left\{ \left( \sup_{t \in [a,b] \cap \mathbb{T}} \dfrac{M(t)}{M^{\sigma}(t)} \right)^{\frac{1}{2}} + \left[\left(\sup_{t \in [a,b] \cap \mathbb{T}} \dfrac{\mu(t)|M^{\Delta}(t)|}{M^{\sigma}(t)} \right) + \left(\sup_{t \in [a,b] \cap \mathbb{T}} \dfrac{M(t)}{M^{\sigma}(t)} \right) \right]^{\frac{1}{2}} \right\}^2.$$

## Proof

## References

R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey

## $\Delta$-Inequalities

Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |