Delta Cauchy-Schwarz inequality

From timescalewiki
Jump to: navigation, search

Theorem[edit]

Let $a,b \in \mathbb{T}$. For rd-continuous $f,g \colon [a,b]\cap \mathbb{T} \rightarrow \mathbb{R}$ we have $$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \sqrt{\left( \displaystyle\int_a^b |f(t)|^2 \Delta t \right) \left( \displaystyle\int_a^b |g(t)|^2 \Delta t \right)}$$

Proof[edit]

References[edit]

Ravi AgarwalMartin Bohner and Allan Peterson: Inequalities on Time Scales: A Survey (2001)... (previous)... (next): Theorem 3.2

$\Delta$-Inequalities

Bernoulli Bihari Cauchy-Schwarz Gronwall Hölder Jensen Lyapunov Markov Minkowski Opial Tschebycheff Wirtinger