# Delta Markov inequality

From timescalewiki

## Theorem

Let $\mathbb{T}$ be a time scale with $a \in \mathbb{T}$. Then $$P(X \geq a) \leq \dfrac{\mathbb{E}_{\mathbb{T}}(X)}{a},$$ where $X$ is a random variable, $P$ denotes probability, and $\mathbb{E}_{\mathbb{T}}$ denotes expected value.

## Proof

## References

## $\Delta$-Inequalities

Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov |
Minkowski | Opial | Tschebycheff | Wirtinger |