# Delta Bernoulli inequality

From timescalewiki

## Theorem

Let $\mathbb{T}$ be a time scale and $\alpha \in \mathbb{R}$ be a positively regressive constant. Then for all $t,s \in \mathbb{T}$ $$e_{\alpha} \geq 1 + \alpha(t-s),$$ where $e_{\alpha}$ denotes the delta exponential.

## Proof

## References

Ravi Agarwal, Martin Bohner and Allan Peterson: *Inequalities on Time Scales: A Survey* (2001)... (previous)... (next): Theorem 5.5

## $\Delta$-Inequalities

Bernoulli |
Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |