Quantum q less than 1

From timescalewiki
Revision as of 01:23, 22 May 2015 by Tom (talk | contribs)
Jump to: navigation, search

Let $q<1$. The set $\overline{q^{\mathbb{Z}}}=\{0, \ldots, q^{2}, q^{1}, 1, q^{-1}, q^{-2}, \ldots \}$ of quantum numbers is a time scale.

$\mathbb{T}=\overline{q^{\mathbb{Z}}}, q<1$
Generic element $t\in \mathbb{T}$: For some $n \in \mathbb{Z}, t =q^n$
Jump operator: $\sigma(t) = \dfrac{t}{q}$
Graininess operator: $\begin{array}{ll} \mu(t) &= \dfrac{t}{q} - t \\ &= \dfrac{t}{q} (1-q) \end{array}$
$\Delta$-derivative: $f^{\Delta}(t)= \left\{ \begin{array}{ll} \dfrac{f(\frac{t}{q})-f(t)}{\frac{t}{q}(1-q)} &; t\neq 0 \\ \displaystyle\lim_{h \rightarrow 0} \dfrac{f(h)-f(0)}{h} &; t=0 \end{array} \right.$
$\Delta$-integral: $\begin{array}{ll} \displaystyle\int_s^t f(\tau) \Delta \tau &= \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} q^{k-1} (1-q) f(q^k) \\ \end{array}$
Exponential function: $\begin{array}{ll} e_p(t,s) &= \exp \left( \displaystyle\int_{s}^{t} \dfrac{1}{\mu(\tau)} \log( 1 + p(\tau) \mu(\tau) ) \Delta \tau \right) \\ &= \exp \left( \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} \mu(q^k) \dfrac{1}{\mu(q^k)} \log(1 + p(q^k)\mu(q^k)) \right) \\ &= \exp \left( \displaystyle\sum_{k=\log_q(s)}^{\log_q(t)-1} \log(1 + p(q^k)\mu(q^k)) \right) \\ &= \displaystyle\prod_{k=\log_q(s)}^{\log_q(t)-1} 1 + p(q^k)q^{k-1}(1-q) \end{array}$

Examples of time scales

$\Huge\mathbb{R}$
Real numbers
$\Huge\mathbb{Z}$
Integers
$\Huge{h\mathbb{Z}}$
Multiples of integers
$\Huge\mathbb{Z}^2$
Square integers
$\Huge\mathbb{H}$
Harmonic numbers
$\Huge\mathbb{T}_{\mathrm{iso}}$
Isolated points
$\Huge\sqrt[n]{\mathbb{N}_0}$
nth root numbers
$\Huge\mathbb{P}_{a,b}$
Evenly spaced intervals
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q>1$
$\huge\overline{q^{\mathbb{Z}}}$
Quantum, $q<1$
$\overline{\left\{\dfrac{1}{n} \colon n \in \mathbb{Z}^+\right\}}$
Closure of unit fractions
$\Huge\mathcal{C}$
Cantor set