Delta Hölder inequality
From timescalewiki
Theorem
Let $a,b \in \mathbb{T}$. For rd-continuous $f,g \colon [a,b]\cap\mathbb{T} \rightarrow \mathbb{R}$ we have $$\displaystyle\int_a^b |f(t)g(t)| \Delta t \leq \left( \displaystyle\int_a^b |f(t)|^p \Delta t \right)^{\frac{1}{p}} \left(\displaystyle\int_a^b |g(t)|^q \Delta t \right)^{\frac{1}{q}}$$ where $p>1$ and $q = \dfrac{p}{p-1}$.
Proof
References
- Ravi Agarwal, Martin Bohner and Allan Peterson: Inequalities on Time Scales: A Survey (2001)... (previous)... (next): $3.3.1$
R. Agarwal, M. Bohner, A. Peterson - Inequalities on Time Scales: A Survey
$\Delta$-Inequalities
Bernoulli | Bihari | Cauchy-Schwarz | Gronwall | Hölder | Jensen | Lyapunov | Markov | Minkowski | Opial | Tschebycheff | Wirtinger |