Delta cosine

From timescalewiki
Revision as of 06:10, 1 March 2015 by Tom (talk | contribs) (Created page with "Let $\mathbb{T}$ be a time scale and let $t_0 \in \mathbb{T}$ and let $p \colon \mathbb{T} \rightarrow \mathbb{R}$ be a regressive_function | regressive fun...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Let $\mathbb{T}$ be a time scale and let $t_0 \in \mathbb{T}$ and let $p \colon \mathbb{T} \rightarrow \mathbb{R}$ be a regressive function. We define the trigonometric functions $\cos_p \colon \mathbb{T} \rightarrow \mathbb{R}$ $$\cos_p(t,t_0)=\dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2},$$ where $i=\sqrt{-1}$.

Time Scale Cosine Functions
$\mathbb{T}$
$\mathbb{R}$ $\cos_p(t,s)= $
$\mathbb{Z}$ $\cos_p(t,s) = $
$h\mathbb{Z}$ $\cos_p(t,s) = $
$\mathbb{Z}^2$ $\cos_p(t,s) = $
$\overline{q^{\mathbb{Z}}}, q > 1$ $\cos_p(t,s) = $
$\overline{q^{\mathbb{Z}}}, q < 1$ $\cos_p(t,s) =$
$\mathbb{H}$ $\cos_p(t,s) = $