Delta gk
From timescalewiki
Let $\mathbb{T}$ be a time scale and let $t,s \in \mathbb{T}$. The $g_k$ monomials are defined by the recurrence $$\left\{ \begin{array}{ll} g_0(t,s)=1 \\ g_{k+1}(t,s)=\displaystyle\int_s^t g_k(\sigma(\tau),s) \Delta \tau. \end{array} \right.$$
Properties
Zeros of delta gk
Relationship between delta hk and delta gk
Examples
$\mathbb{T}=$ | $g_k(t,t_0)=$ |
$\mathbb{R}$ | $g_k(t,t_0)=\dfrac{(t-t_0)^k}{k!}$ |
$\mathbb{Z}$ | $g_k(t,t_0)= $ |
$h\mathbb{Z}$ | $g_k(t,t_0)=$ |
$\mathbb{Z}^2$ | $g_k(t,t_0)=$ |
$\overline{q^{\mathbb{Z}}}, q > 1$ | $g_k(t,t_0)=$ |
$\overline{q^{\mathbb{Z}}}, q < 1$ | $g_k(t,t_0)=$ |
$\mathbb{H}$ | $g_k(t,t_0)=$ |
See also
$\Delta$-special functions on time scales | ||||||
$\cos_p$ |
$\cosh_p$ |
$e_p$ |
$g_k$ |
$h_k$ |
$\sin_p$ |
$\sinh_p$ |