Difference between revisions of "Integers"
From timescalewiki
Line 24: | Line 24: | ||
|[[Delta_integral | $\Delta$-integral]] | |[[Delta_integral | $\Delta$-integral]] | ||
| $\int_s^t f(\tau) \Delta \tau = \left\{ \begin{array}{ll} | | $\int_s^t f(\tau) \Delta \tau = \left\{ \begin{array}{ll} | ||
− | \sum_{k=s}^{t-1} f(k) &; t | + | \sum_{k=s}^{t-1} f(k) &; t \gt s \\ |
0 &; t=s \\ | 0 &; t=s \\ | ||
− | -\sum_{k=t}^{s-1} f(k) &; t | + | -\sum_{k=t}^{s-1} f(k) &; t \lt s |
\end{array} \right.$ | \end{array} \right.$ | ||
|- | |- | ||
|[[Nabla integral | $\nabla$-integral]] | |[[Nabla integral | $\nabla$-integral]] | ||
− | | | + | | $\int_s^t f(\tau) \nabla \tau = \left\{ \begin{array}{ll} |
\displaystyle\sum_{k=s+1}^t f(k) &; t>s \\ | \displaystyle\sum_{k=s+1}^t f(k) &; t>s \\ | ||
0 &; t=s \\ | 0 &; t=s \\ | ||
− | -\sum_{k=t+1}^s f(k) &; t | + | -\sum_{k=t+1}^s f(k) &; t\lt s |
− | \end{array} \right. | + | \end{array} \right.$ |
|- | |- | ||
|[[Delta exponential | $\Delta$-exponential]] | |[[Delta exponential | $\Delta$-exponential]] | ||
− | | [[Derivation of delta e sub p on T=Z|derivation]] | + | | $e_p(t,s) = \left\{ \begin{array}{ll} |
+ | \displaystyle\prod_{k=s}^{t-1} 1+p(k) &= t \gt s \\ | ||
+ | 1 &= t=s \\ | ||
+ | \displaystyle\prod_{k=t}^{s-1} \dfrac{1}{1+p(k)} &= t \gt s \\ | ||
+ | \end{array} \right.$ | ||
+ | ([[Derivation of delta e sub p on T=Z|derivation]]) | ||
|- | |- | ||
|[[Nabla exponential | $\nabla$-exponential]] | |[[Nabla exponential | $\nabla$-exponential]] | ||
| | | | ||
|- | |- | ||
− | |[[Trig_functions|$\mathrm{sin}_p(t, | + | |[[Trig_functions|$\mathrm{sin}_p(t,s)$]] |
− | |$$ | + | |$$\sin_p(t,s) = \dfrac{\displaystyle\prod_{k=s}^{t-1}1+ip(k) - \displaystyle\prod_{k=s}^{t-1}1-ip(k)}{2i}$$ |
− | \sin_p(t, | + | ([[Derivation of sin sub p on T=Z|derivation]]) |
− | |||
− | |||
|- | |- | ||
|$\mathrm{sin}_1(t,0)$ | |$\mathrm{sin}_1(t,0)$ |
Revision as of 20:37, 29 April 2015
The set $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$ of integers is a time scale.
Forward jump: | $\sigma(t)=t+1$ |
Forward graininess: | $\mu(t)=1$ |
Backward jump: | $\rho(t)=t-1$ |
Backward graininess: | $\nu(t)=1$ |
$\Delta$-derivative | $f^{\Delta}(t)=f(t+1)-f(t)$ |
$\nabla$-derivative | $f^{\nabla}(t)=f(t)-f(t-1)$ |
$\Delta$-integral | $\int_s^t f(\tau) \Delta \tau = \left\{ \begin{array}{ll} \sum_{k=s}^{t-1} f(k) &; t \gt s \\ 0 &; t=s \\ -\sum_{k=t}^{s-1} f(k) &; t \lt s \end{array} \right.$ |
$\nabla$-integral | $\int_s^t f(\tau) \nabla \tau = \left\{ \begin{array}{ll} \displaystyle\sum_{k=s+1}^t f(k) &; t>s \\ 0 &; t=s \\ -\sum_{k=t+1}^s f(k) &; t\lt s \end{array} \right.$ |
$\Delta$-exponential | $e_p(t,s) = \left\{ \begin{array}{ll} \displaystyle\prod_{k=s}^{t-1} 1+p(k) &= t \gt s \\ 1 &= t=s \\ \displaystyle\prod_{k=t}^{s-1} \dfrac{1}{1+p(k)} &= t \gt s \\ \end{array} \right.$ |
$\nabla$-exponential | |
$\mathrm{sin}_p(t,s)$ | $$\sin_p(t,s) = \dfrac{\displaystyle\prod_{k=s}^{t-1}1+ip(k) - \displaystyle\prod_{k=s}^{t-1}1-ip(k)}{2i}$$ |
$\mathrm{sin}_1(t,0)$ | $$\begin{array}{ll} \sin_1(t,0) &= \dfrac{(1+i)^{t}-(1-i)^{t}}{2i} \\ &= \dfrac{\displaystyle\sum_{k=0}^{t} {t \choose k} i^k - \displaystyle\sum_{k=0}^{t} (-1)^k {t \choose k} i^k}{2i} \end{array}$$ |
$\mathrm{cos}_p(t,t_0)$ | $$\begin{array}{ll} \cos_p(t,t_0) &= \dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2} \\ &= \dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) + \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2} \end{array}$$ |
$\mathrm{cos}_1(t,0)$ | \begin{array}{ll} \cos_1(t,0) &= \dfrac{(1+i)^{t}+(1-i)^{t}}{2} \\ &= \dfrac{\displaystyle\sum_{k=0}^{t} {t \choose k} i^k + \displaystyle\sum_{k=0}^{t} (-1)^k {t \choose k} i^k}{2} \end{array} |
Hilger circle | |
Gamma function: | $\Gamma_{\mathbb{Z}}(t;s)=\displaystyle\sum_{k=0}^{\infty} \left( \displaystyle\prod_{j=s}^{k-1} \dfrac{j+x}{j+1} \right) \dfrac{1}{2^{k+1}}$ |