Difference between revisions of "Integers"

From timescalewiki
Jump to: navigation, search
Line 4: Line 4:
 
|+$\mathbb{T}=\mathbb{Z}$
 
|+$\mathbb{T}=\mathbb{Z}$
 
|-
 
|-
|Generic element $t\in \mathbb{T}$
+
|[[Forward jump]]:
|For some $n \in \mathbb{Z}, t =n$
 
|-
 
|Jump operator
 
 
|$\sigma(t)=t+1$
 
|$\sigma(t)=t+1$
 
|-
 
|-
|Graininess operator
+
|[[Forward graininess]]:
 
|$\mu(t)=1$
 
|$\mu(t)=1$
 +
|-
 +
|[[Backward jump]]:
 +
|$\rho(t)=t-1$
 +
|-
 +
|[[Backward graininess]]:
 +
|$\nu(t)=1$
 
|-
 
|-
 
|[[Delta_derivative | $\Delta$-derivative]]
 
|[[Delta_derivative | $\Delta$-derivative]]
Line 20: Line 23:
 
|-
 
|-
 
|[[Delta_integral | $\Delta$-integral]]
 
|[[Delta_integral | $\Delta$-integral]]
| $$\int_s^t f(\tau) \Delta \tau = \left\{ \begin{array}{ll}
+
| $\int_s^t f(\tau) \Delta \tau = \left\{ \begin{array}{ll}
 
\sum_{k=s}^{t-1} f(k) &; t > s \\
 
\sum_{k=s}^{t-1} f(k) &; t > s \\
 
0 &; t=s \\
 
0 &; t=s \\
 
-\sum_{k=t}^{s-1} f(k) &; t < s
 
-\sum_{k=t}^{s-1} f(k) &; t < s
\end{array} \right.$$
+
\end{array} \right.$
 
|-
 
|-
 
|[[Nabla integral | $\nabla$-integral]]
 
|[[Nabla integral | $\nabla$-integral]]
Line 34: Line 37:
 
|-
 
|-
 
|[[Delta exponential | $\Delta$-exponential]]
 
|[[Delta exponential | $\Delta$-exponential]]
| $\begin{array}{ll}
+
| [[Derivation of delta e sub p on T=Z|derivation]]
e_p(t,s) &= \exp \left( \displaystyle\int_{s}^{t} \dfrac{1}{\mu(\tau)} \log(1 + p(\tau)) \Delta \tau \right) \\
 
&= \exp \left( \displaystyle\sum_{k=s}^{t-1} \log(1+p(k))  \right) \\
 
&= \displaystyle\prod_{k=s}^{t-1} \left( 1+p(k) \right) \\
 
\end{array}$
 
 
|-
 
|-
 
|[[Nabla exponential | $\nabla$-exponential]]
 
|[[Nabla exponential | $\nabla$-exponential]]

Revision as of 19:31, 29 April 2015

The set $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$ of integers is a time scale.

$\mathbb{T}=\mathbb{Z}$
Forward jump: $\sigma(t)=t+1$
Forward graininess: $\mu(t)=1$
Backward jump: $\rho(t)=t-1$
Backward graininess: $\nu(t)=1$
$\Delta$-derivative $f^{\Delta}(t)=f(t+1)-f(t)$
$\nabla$-derivative $f^{\nabla}(t)=f(t)-f(t-1)$
$\Delta$-integral $\int_s^t f(\tau) \Delta \tau = \left\{ \begin{array}{ll} \sum_{k=s}^{t-1} f(k) &; t > s \\ 0 &; t=s \\ -\sum_{k=t}^{s-1} f(k) &; t < s \end{array} \right.$
$\nabla$-integral $$\int_s^t f(\tau) \nabla \tau = \left\{ \begin{array}{ll} \displaystyle\sum_{k=s+1}^t f(k) &; t>s \\ 0 &; t=s \\ -\sum_{k=t+1}^s f(k) &; t<s \end{array} \right.$$
$\Delta$-exponential derivation
$\nabla$-exponential
$\mathrm{sin}_p(t,0)$ $$\begin{array}{ll} \sin_p(t,t_0) &= \dfrac{e_{ip}(t,t_0)-e_{-ip}(t,t_0)}{2i} \\ &= \dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) - \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2i} \end{array}$$
$\mathrm{sin}_1(t,0)$ $$\begin{array}{ll} \sin_1(t,0) &= \dfrac{(1+i)^{t}-(1-i)^{t}}{2i} \\ &= \dfrac{\displaystyle\sum_{k=0}^{t} {t \choose k} i^k - \displaystyle\sum_{k=0}^{t} (-1)^k {t \choose k} i^k}{2i} \end{array}$$

Sin 1T=Z.png

$\mathrm{cos}_p(t,t_0)$ $$\begin{array}{ll} \cos_p(t,t_0) &= \dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2} \\ &= \dfrac{\displaystyle\prod_{k=t_0}^{t-1}1+ip(k) + \displaystyle\prod_{k=t_0}^{t-1}1-ip(k)}{2} \end{array}$$
$\mathrm{cos}_1(t,0)$ \begin{array}{ll} \cos_1(t,0) &= \dfrac{(1+i)^{t}+(1-i)^{t}}{2} \\ &= \dfrac{\displaystyle\sum_{k=0}^{t} {t \choose k} i^k + \displaystyle\sum_{k=0}^{t} (-1)^k {t \choose k} i^k}{2} \end{array}

Cos 1T=Z.png

Hilger circle Hilgercircle,T=Z.png
Gamma function: $\Gamma_{\mathbb{Z}}(t;s)=\displaystyle\sum_{k=0}^{\infty} \left( \displaystyle\prod_{j=s}^{k-1} \dfrac{j+x}{j+1} \right) \dfrac{1}{2^{k+1}}$