Difference between revisions of "Delta cosine"
(→Examples) |
|||
Line 15: | Line 15: | ||
|- | |- | ||
|$\mathbb{T}$ | |$\mathbb{T}$ | ||
− | | | + | |$\cos_p(t,s)= $ |
|- | |- | ||
|[[Real_numbers | $\mathbb{R}$]] | |[[Real_numbers | $\mathbb{R}$]] | ||
− | | | + | | |
|- | |- | ||
|[[Integers | $\mathbb{Z}$]] | |[[Integers | $\mathbb{Z}$]] | ||
− | | | + | | |
|- | |- | ||
|[[Multiples_of_integers | $h\mathbb{Z}$]] | |[[Multiples_of_integers | $h\mathbb{Z}$]] | ||
− | | | + | | |
|- | |- | ||
| [[Square_integers | $\mathbb{Z}^2$]] | | [[Square_integers | $\mathbb{Z}^2$]] | ||
− | | | + | | |
|- | |- | ||
|[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]] | |[[Quantum_q_greater_than_1 | $\overline{q^{\mathbb{Z}}}, q > 1$]] | ||
− | | | + | | |
|- | |- | ||
|[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]] | |[[Quantum_q_less_than_1 | $\overline{q^{\mathbb{Z}}}, q < 1$]] | ||
− | | | + | | |
|- | |- | ||
|[[Harmonic_numbers | $\mathbb{H}$]] | |[[Harmonic_numbers | $\mathbb{H}$]] | ||
− | | | + | | |
|} | |} | ||
{{:Delta special functions footer}} | {{:Delta special functions footer}} |
Revision as of 18:21, 21 March 2015
Let $\mathbb{T}$ be a time scale and let $t_0 \in \mathbb{T}$ and let $\mu p^2 \colon \mathbb{T} \rightarrow \mathbb{R}$ be a regressive function. We define the trigonometric functions $\cos_p \colon \mathbb{T} \rightarrow \mathbb{R}$ $$\cos_p(t,t_0)=\dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2},$$ where $i=\sqrt{-1}$.
Contents
Properties
Theorem
The following formula holds: $$\cos_p^{\Delta}(t,t_0)=-p(t)\sin_p(t,t_0),$$ where $\cos^{\Delta}_p$ denotes the delta derivative of the delta cosine function and $\sin_p$ denotes the delta sine function.
Proof
Compute $$\begin{array}{ll} \cos_p^{\Delta}(t,t_0) &= \dfrac{1}{2} \dfrac{\Delta}{\Delta t} \Big(e_{ip}(t,t_0) + e_{-ip}(t,t_0) \Big) \\ &= \dfrac{ip}{2} (e_{ip}-e_{-ip}(t,t_0)) \\ &= -\dfrac{p}{2i} (e_{ip}-e_{-ip}(t,t_0)) \\ &= -\sin_p(t,t_0), \end{array}$$ as was to be shown. █
References
Theorem
The following formula holds: $$\cos_p^2(t,t_0)+\sin_p^2(t,t_0)=e_{\mu p^2}(t,t_0),$$ where $\cos_p$ denotes the $\Delta$-$\cos_p$ function and $\sin_p$ denotes the $\Delta$-$\sin_p$ function.
Proof
References
Relation to other special functions
Theorem
The following formula holds: $$\sin_p^{\Delta}(t,t_0)=p(t)\cos_p(t,t_0),$$ where $\sin_p$ denotes the $\Delta$-$\sin_p$ function and $\cos_p$ denotes the $\Delta$-$\cos_p$ function.
Proof
Compute $$\begin{array}{ll} \sin^{\Delta}_p(t,t_0) &= \dfrac{1}{2i} \dfrac{\Delta}{\Delta t} \left( e_{ip}(t,t_0) - e_{-ip}(t,t_0) \right) \\ &= \dfrac{ip}{2i} ( e_{ip}(t,t_0) + e_{-ip}(t,t_0) ) \\ &= \dfrac{1}{2} (e_{ip}(t,t_0)+e_{-ip}(t,t_0)) \\ &= p\cos_p(t,t_0), \end{array}$$ as was to be shown. █
References
Examples
$\mathbb{T}$ | $\cos_p(t,s)= $ |
$\mathbb{R}$ | |
$\mathbb{Z}$ | |
$h\mathbb{Z}$ | |
$\mathbb{Z}^2$ | |
$\overline{q^{\mathbb{Z}}}, q > 1$ | |
$\overline{q^{\mathbb{Z}}}, q < 1$ | |
$\mathbb{H}$ |
$\Delta$-special functions on time scales | ||||||
$\cos_p$ |
$\cosh_p$ |
$e_p$ |
$g_k$ |
$h_k$ |
$\sin_p$ |
$\sinh_p$ |