Difference between revisions of "Gamma function"

From timescalewiki
Jump to: navigation, search
(Created page with "We define $$p_f(t,s)=e_{\frac{f}{\mathrm{id}}}(t,s),$$ where $\mathrm{id}$ denotes the identity map $\mathrm{id} \colon \mathbb{T} \rightarrow \mathbb{T}$ and $e_{\cdot}$ den...")
 
Line 7: Line 7:
 
With these definitions, we have the gamma operator
 
With these definitions, we have the gamma operator
 
$$\Gamma_{\mathbb{T}}(f;s)=\mathscr{L}_{\mathbb{T}}\{p_{f \boxminus_{\mu} 1}(\cdot,s)\}(1)=\displaystyle\int_0^{\infty} p_{f \boxminus_{\mu}1}(\eta,s) e_{\ominus_{\mu}1}^{\sigma}(\eta,0) \Delta \eta.$$
 
$$\Gamma_{\mathbb{T}}(f;s)=\mathscr{L}_{\mathbb{T}}\{p_{f \boxminus_{\mu} 1}(\cdot,s)\}(1)=\displaystyle\int_0^{\infty} p_{f \boxminus_{\mu}1}(\eta,s) e_{\ominus_{\mu}1}^{\sigma}(\eta,0) \Delta \eta.$$
 +
 +
=Properties of gamma functions=
 +
 +
==Convergence==
 +
 +
=Examples of gamma functions=
 +
 +
=References=
 +
<div id="tgfots"></div><bibtex>
 +
@inproceedings{
 +
  title="The Gamma Function on Time Scales",
 +
  author="Bohner, Martin and Karpuz, Başak",
 +
  booktitle="Dynamics of Continuous, Discrete \& Impulsive Systems. Series A. Mathematical Analysis",
 +
  volume="20",
 +
  year="2013",
 +
  pages="pp.507--522",
 +
  url="http://online.watsci.org/abstract_pdf/2013v20/v20n4a-pdf/7.pdf"
 +
}
 +
</bibtex>

Revision as of 02:43, 24 July 2014

We define $$p_f(t,s)=e_{\frac{f}{\mathrm{id}}}(t,s),$$ where $\mathrm{id}$ denotes the identity map $\mathrm{id} \colon \mathbb{T} \rightarrow \mathbb{T}$ and $e_{\cdot}$ denotes the time scale exponential. Define the operations $$f \boxplus_{\mu} g := f+g+\dfrac{1}{\mathrm{id}}fg\mu$$ and $$f \boxminus_{\mu} g := \dfrac{(f-g)\mathrm{id}}{\mathrm{id} + g \mu}.$$ With these definitions, we have the gamma operator $$\Gamma_{\mathbb{T}}(f;s)=\mathscr{L}_{\mathbb{T}}\{p_{f \boxminus_{\mu} 1}(\cdot,s)\}(1)=\displaystyle\int_0^{\infty} p_{f \boxminus_{\mu}1}(\eta,s) e_{\ominus_{\mu}1}^{\sigma}(\eta,0) \Delta \eta.$$

Properties of gamma functions

Convergence

Examples of gamma functions

References

<bibtex>

@inproceedings{

  title="The Gamma Function on Time Scales",
  author="Bohner, Martin and Karpuz, Başak",
  booktitle="Dynamics of Continuous, Discrete \& Impulsive Systems. Series A. Mathematical Analysis",
  volume="20",
  year="2013",
  pages="pp.507--522",
  url="http://online.watsci.org/abstract_pdf/2013v20/v20n4a-pdf/7.pdf"

} </bibtex>