Difference between revisions of "Delta hk"
From timescalewiki
Line 1: | Line 1: | ||
− | Let $\mathbb{T}$ be a [[time scale]] and let $t,s \in \mathbb{T}$. The $h_k$ monomials are defined by the recurrence | + | Let $\mathbb{T}$ be a [[time scale]] and let $t,s \in \mathbb{T}$. The $h_k$ Taylor monomials are defined by the recurrence |
$$\left\{ \begin{array}{ll} | $$\left\{ \begin{array}{ll} | ||
h_0(t,s;\mathbb{T})=1 \\ | h_0(t,s;\mathbb{T})=1 \\ |
Revision as of 17:05, 15 January 2023
Let $\mathbb{T}$ be a time scale and let $t,s \in \mathbb{T}$. The $h_k$ Taylor monomials are defined by the recurrence $$\left\{ \begin{array}{ll} h_0(t,s;\mathbb{T})=1 \\ h_{k+1}(t,s;\mathbb{T})= \displaystyle\int_s^t h_{k}(\tau,s;\mathbb{T}) \Delta \tau. \end{array} \right.$$
Properties
Relationship between delta hk and delta gk
Examples
$\mathbb{T}=$ | $h_k(t,s;\mathbb{T})=$ |
$\mathbb{R}$ | $\dfrac{(t-s)^k}{k!}$ |
$\mathbb{Z}$ | $\displaystyle{t-s \choose k} = \dfrac{(t-s)!}{k! (t-s-k)!}$ |
$h\mathbb{Z}$ | $\dfrac{1}{k!} \displaystyle\prod_{\ell=0}^{k-1}(t-\ell h-s)$ |
$\mathbb{Z}^2$ | |
$\overline{q^{\mathbb{Z}}}, q > 1$ | $\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^ns}{\sum_{i=0}^n q^i}$ |
$\overline{q^{\mathbb{Z}}}, q < 1$ | |
$\mathbb{H}$ |
See also
$\Delta$-special functions on time scales | ||||||
$\cos_p$ |
$\cosh_p$ |
$e_p$ |
$g_k$ |
$h_k$ |
$\sin_p$ |
$\sinh_p$ |