Difference between revisions of "Delta hk"

From timescalewiki
Jump to: navigation, search
Line 1: Line 1:
Let $\mathbb{T}$ be a [[time scale]] and let $t,s \in \mathbb{T}$. The $h_k$ monomials are defined by the recurrence
+
Let $\mathbb{T}$ be a [[time scale]] and let $t,s \in \mathbb{T}$. The $h_k$ Taylor monomials are defined by the recurrence
 
$$\left\{ \begin{array}{ll}
 
$$\left\{ \begin{array}{ll}
 
h_0(t,s;\mathbb{T})=1 \\
 
h_0(t,s;\mathbb{T})=1 \\

Revision as of 17:05, 15 January 2023

Let $\mathbb{T}$ be a time scale and let $t,s \in \mathbb{T}$. The $h_k$ Taylor monomials are defined by the recurrence $$\left\{ \begin{array}{ll} h_0(t,s;\mathbb{T})=1 \\ h_{k+1}(t,s;\mathbb{T})= \displaystyle\int_s^t h_{k}(\tau,s;\mathbb{T}) \Delta \tau. \end{array} \right.$$

Properties

Relationship between delta hk and delta gk

Examples

Time Scale $h_k$ Monomials
$\mathbb{T}=$ $h_k(t,s;\mathbb{T})=$
$\mathbb{R}$ $\dfrac{(t-s)^k}{k!}$
$\mathbb{Z}$ $\displaystyle{t-s \choose k} = \dfrac{(t-s)!}{k! (t-s-k)!}$
$h\mathbb{Z}$ $\dfrac{1}{k!} \displaystyle\prod_{\ell=0}^{k-1}(t-\ell h-s)$
$\mathbb{Z}^2$
$\overline{q^{\mathbb{Z}}}, q > 1$ $\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^ns}{\sum_{i=0}^n q^i}$
$\overline{q^{\mathbb{Z}}}, q < 1$
$\mathbb{H}$

See also

Delta gk

$\Delta$-special functions on time scales


$\cos_p$

$\cosh_p$

$e_p$

$g_k$

$h_k$

$\sin_p$

$\sinh_p$