Difference between revisions of "Delta cosine"
From timescalewiki
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
− | Let $\mathbb{T}$ be a [[time_scale | time scale]], let $t_0 \in \mathbb{T}$ and let $\mu p^2 \colon \mathbb{T} \rightarrow \mathbb{R}$ be a [[regressive_function | regressive function]]. We define the trigonometric functions $\cos_p \colon \mathbb{T} \rightarrow \mathbb{R}$ | + | Let $\mathbb{T}$ be a [[time_scale | time scale]], let $t_0 \in \mathbb{T}$, and let $\mu p^2 \colon \mathbb{T} \rightarrow \mathbb{R}$ be a [[regressive_function | regressive function]]. We define the trigonometric functions $\cos_p \colon \mathbb{T} \rightarrow \mathbb{R}$ |
$$\cos_p(t,t_0)=\dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2},$$ | $$\cos_p(t,t_0)=\dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2},$$ | ||
where $i=\sqrt{-1}$. | where $i=\sqrt{-1}$. |
Revision as of 02:27, 11 June 2016
Let $\mathbb{T}$ be a time scale, let $t_0 \in \mathbb{T}$, and let $\mu p^2 \colon \mathbb{T} \rightarrow \mathbb{R}$ be a regressive function. We define the trigonometric functions $\cos_p \colon \mathbb{T} \rightarrow \mathbb{R}$ $$\cos_p(t,t_0)=\dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2},$$ where $i=\sqrt{-1}$.
Properties
Derivative of delta cosine
Sum of squares of delta cosine and delta sine
Derivative of Delta sine
Examples
$\mathbb{T}$ | $\cos_p(t,s)= $ |
$\mathbb{R}$ | |
$\mathbb{Z}$ | |
$h\mathbb{Z}$ | |
$\mathbb{Z}^2$ | |
$\overline{q^{\mathbb{Z}}}, q > 1$ | |
$\overline{q^{\mathbb{Z}}}, q < 1$ | |
$\mathbb{H}$ |
See Also
$\Delta$-special functions on time scales | ||||||
$\cos_p$ |
$\cosh_p$ |
$e_p$ |
$g_k$ |
$h_k$ |
$\sin_p$ |
$\sinh_p$ |