Difference between revisions of "Delta cosine"
From timescalewiki
Line 1: | Line 1: | ||
+ | __NOTOC__ | ||
Let $\mathbb{T}$ be a [[time_scale | time scale]] and let $t_0 \in \mathbb{T}$ and let $\mu p^2 \colon \mathbb{T} \rightarrow \mathbb{R}$ be a [[regressive_function | regressive function]]. We define the trigonometric functions $\cos_p \colon \mathbb{T} \rightarrow \mathbb{R}$ | Let $\mathbb{T}$ be a [[time_scale | time scale]] and let $t_0 \in \mathbb{T}$ and let $\mu p^2 \colon \mathbb{T} \rightarrow \mathbb{R}$ be a [[regressive_function | regressive function]]. We define the trigonometric functions $\cos_p \colon \mathbb{T} \rightarrow \mathbb{R}$ | ||
$$\cos_p(t,t_0)=\dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2},$$ | $$\cos_p(t,t_0)=\dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2},$$ | ||
Line 10: | Line 11: | ||
=Properties= | =Properties= | ||
− | + | [[Derivative of delta cosine]]<br /> | |
− | + | [[Sum of squares of delta cosine and delta sine]]<br /> | |
− | + | [[Derivative of Delta sine]]<br /> | |
− | |||
− | |||
=Examples= | =Examples= | ||
Line 23: | Line 22: | ||
<center>{{:Delta special functions footer}}</center> | <center>{{:Delta special functions footer}}</center> | ||
+ | |||
+ | [[Category:specialfunction]] |
Revision as of 21:21, 9 June 2016
Let $\mathbb{T}$ be a time scale and let $t_0 \in \mathbb{T}$ and let $\mu p^2 \colon \mathbb{T} \rightarrow \mathbb{R}$ be a regressive function. We define the trigonometric functions $\cos_p \colon \mathbb{T} \rightarrow \mathbb{R}$ $$\cos_p(t,t_0)=\dfrac{e_{ip}(t,t_0)+e_{-ip}(t,t_0)}{2},$$ where $i=\sqrt{-1}$.
Properties
Derivative of delta cosine
Sum of squares of delta cosine and delta sine
Derivative of Delta sine
Examples
$\mathbb{T}$ | $\cos_p(t,s)= $ |
$\mathbb{R}$ | |
$\mathbb{Z}$ | |
$h\mathbb{Z}$ | |
$\mathbb{Z}^2$ | |
$\overline{q^{\mathbb{Z}}}, q > 1$ | |
$\overline{q^{\mathbb{Z}}}, q < 1$ | |
$\mathbb{H}$ |
See Also
$\Delta$-special functions on time scales | ||||||
$\cos_p$ |
$\cosh_p$ |
$e_p$ |
$g_k$ |
$h_k$ |
$\sin_p$ |
$\sinh_p$ |