Difference between revisions of "Delta hk"
From timescalewiki
Line 13: | Line 13: | ||
</gallery> | </gallery> | ||
</div> | </div> | ||
+ | |||
+ | =Properties= | ||
+ | {{:Relationship between delta hk and delta gk}} | ||
=Examples= | =Examples= |
Revision as of 20:10, 1 June 2016
Define $h_n \colon \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ by the scheme: $$\left\{ \begin{array}{ll} h_0(t,s)=1 \\ h_{n+1}(t,s)= \displaystyle\int_s^t h_{n}(\tau,s) \Delta \tau. \end{array} \right.$$
Contents
Properties
Theorem
Let $\mathbb{T}$ be a time scale, let $t,s \in \mathbb{T}$, and let $k$ be a nonnegative integer. Then the following formula holds: $$h_k(t,s;\mathbb{T})=(-1)^kg_k(s,t;\mathbb{T}),$$ where $h_k$ denotes the delta hk and $g_k$ denotes the delta gk.
Proof
References
Examples
$\mathbb{T}=$ | $h_k(t,s;\mathbb{T})=$ |
$\mathbb{R}$ | $\dfrac{(t-s)^k}{k!}$ |
$\mathbb{Z}$ | $\displaystyle{t-s \choose k} = \dfrac{(t-s)!}{k! (t-s-k)!}$ |
$h\mathbb{Z}$ | $\dfrac{1}{k!} \displaystyle\prod_{\ell=0}^{k-1}(t-\ell h-s)$ |
$\mathbb{Z}^2$ | |
$\overline{q^{\mathbb{Z}}}, q > 1$ | $\displaystyle\prod_{n=0}^{k-1} \dfrac{t-q^ns}{\sum_{i=0}^n q^i}$ |
$\overline{q^{\mathbb{Z}}}, q < 1$ | |
$\mathbb{H}$ |
See also
$\Delta$-special functions on time scales | ||||||
$\cos_p$ |
$\cosh_p$ |
$e_p$ |
$g_k$ |
$h_k$ |
$\sin_p$ |
$\sinh_p$ |