Difference between revisions of "Gamma function"
(→Properties of gamma functions) |
|||
Line 7: | Line 7: | ||
[[Gamma function diverges at zero]]<br /> | [[Gamma function diverges at zero]]<br /> | ||
[[Gamma function diverges at infinity]]<br /> | [[Gamma function diverges at infinity]]<br /> | ||
− | + | [[Gamma function equals one at one]]<br /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | </ | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> |
Revision as of 17:56, 15 January 2023
Let $\mathbb{T}$ be a time scale and define $p_f(t,s)=e_{\frac{f}{\mathrm{id}}}(t,s)$, where $\mathrm{id}$ denotes the identity map $\mathrm{id} \colon \mathbb{T} \rightarrow \mathbb{T}$ and $e_{\frac{f}{\mathrm{id}}}$ denotes the delta exponential. With these definitions, we define the gamma operator $$\Gamma_{\mathbb{T}}(f;s)=\mathscr{L}_{\mathbb{T}}\{p_{f \boxminus_{\mu} 1}(\cdot,s)\}(1)=\displaystyle\int_0^{\infty} p_{f \boxminus_{\mu}1}(\eta,s) e_{\ominus_{\mu}1}^{\sigma}(\eta,0) \Delta \eta,$$ where $\mathscr{L}_{\mathbb{T}}$ denotes the Laplace transform, $\boxminus_{\mu}$ denotes forward box minus, $\ominus_{\mu}$ denotes forward circle minus, and $\sigma$ denotes the forward jump.
Properties of gamma functions
Convergence of gamma function at positive values
Gamma function diverges at zero
Gamma function diverges at infinity
Gamma function equals one at one
Theorem: If $s \in \mathbb{T}^+$, then for all $x \in \mathbb{R}^+$, $$\Gamma_{\mathbb{T}}(x \boxplus_{\mu} 1;s) = \dfrac{x}{s} \Gamma_{\mathbb{T}}(x;s).$$
Proof: █
Define the bracket number operators (they are actually functions) $$[n]_{\mathbb{T}} = \left\{ \begin{array}{ll} 0 &; n=0 \\ [n-1]_{\mathbb{T}} \boxplus_{\mu} 1 &; n=1,2,\ldots \end{array} \right.$$ and the bracket factorial $$[n]_{\mathbb{T}}! = \left\{ \begin{array}{ll} 1&; n=0 \\ \displaystyle\prod_{j=1}^n [j]_{\mathbb{T}} &; n=1,2,\ldots \end{array} \right.$$
Theorem: Let $n \in \mathbb{Z}^+$ and assume that $[k]_{\mathbb{T}}$ is a constant function on $\mathbb{T}^+$ for all $k\in[1,n]\bigcap \mathbb{Z}^+$. Then $$\Gamma_{\mathbb{T}}\left( [n]_{\mathbb{T}};s \right) = \dfrac{[n-1]_{\mathbb{T}}!}{s^{n-1}}.$$
Proof: █
Examples of gamma functions
We write formulas for gamma functions defined for $x \in \mathbb{R}^+$ and $s \in \mathbb{T}^+$.
$\mathbb{T}=$ | $\Gamma_{\mathbb{T}}(x;s)=$ |
$\mathbb{R}$ | $\displaystyle\int_0^{\infty} \left( \dfrac{\tau}{s} \right)^{x-1}e^{-\tau} d\tau$ |
$h\mathbb{Z};h>0$ | $h \displaystyle\sum_{k=0}^{\infty} \left( \displaystyle\prod_{j=s}^{k-1} \dfrac{j+x}{j+1} \right) \dfrac{1}{(1+h)^{k+1}}$ |
$\overline{q^{\mathbb{Z}}}; q>1$ | $\dfrac{(q-1)s}{(1+(q-1)x)^{\log_q(s)}} \displaystyle\sum_{k=-\infty}^{\infty} \dfrac{(1+(q-1)x)^k}{\prod_{j=-\infty}^{k} (1+(q-1)q^k)}$ |
References
- Martin Bohner and Başak Karpuz: The gamma function on time scales (2013)... (previous): Definition 2